ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metflem Unicode version

Theorem metflem 13420
Description: Lemma for metf 13422 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metflem  |-  ( D  e.  ( Met `  X
)  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) )
Distinct variable groups:    x, y, z, D    x, X, y, z

Proof of Theorem metflem
StepHypRef Expression
1 metrel 13413 . . . 4  |-  Rel  Met
2 relelfvdm 5539 . . . 4  |-  ( ( Rel  Met  /\  D  e.  ( Met `  X
) )  ->  X  e.  dom  Met )
31, 2mpan 424 . . 3  |-  ( D  e.  ( Met `  X
)  ->  X  e.  dom  Met )
4 ismet 13415 . . 3  |-  ( X  e.  dom  Met  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
53, 4syl 14 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  e.  ( Met `  X
)  <->  ( D :
( X  X.  X
) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
65ibi 176 1  |-  ( D  e.  ( Met `  X
)  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   class class class wbr 3998    X. cxp 4618   dom cdm 4620   Rel wrel 4625   -->wf 5204   ` cfv 5208  (class class class)co 5865   RRcr 7785   0cc0 7786    + caddc 7789    <_ cle 7967   Metcmet 13052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-met 13060
This theorem is referenced by:  metf  13422
  Copyright terms: Public domain W3C validator