ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubop Unicode version

Theorem mosubop 4742
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
mosubop.1  |-  E* x ph
Assertion
Ref Expression
mosubop  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubop
StepHypRef Expression
1 mosubop.1 . . 3  |-  E* x ph
21gen2 1473 . 2  |-  A. y A. z E* x ph
3 mosubopt 4741 . 2  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
42, 3ax-mp 5 1  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1515   E*wmo 2055   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  ovi3  6085  ov6g  6086  oprabex3  6216  axaddf  7983  axmulf  7984
  Copyright terms: Public domain W3C validator