ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubop Unicode version

Theorem mosubop 4785
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
mosubop.1  |-  E* x ph
Assertion
Ref Expression
mosubop  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubop
StepHypRef Expression
1 mosubop.1 . . 3  |-  E* x ph
21gen2 1496 . 2  |-  A. y A. z E* x ph
3 mosubopt 4784 . 2  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
42, 3ax-mp 5 1  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1393    = wceq 1395   E.wex 1538   E*wmo 2078   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  ovi3  6142  ov6g  6143  oprabex3  6274  axaddf  8055  axmulf  8056
  Copyright terms: Public domain W3C validator