ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubop Unicode version

Theorem mosubop 4759
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
mosubop.1  |-  E* x ph
Assertion
Ref Expression
mosubop  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubop
StepHypRef Expression
1 mosubop.1 . . 3  |-  E* x ph
21gen2 1474 . 2  |-  A. y A. z E* x ph
3 mosubopt 4758 . 2  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
42, 3ax-mp 5 1  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1516   E*wmo 2056   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  ovi3  6106  ov6g  6107  oprabex3  6237  axaddf  8016  axmulf  8017
  Copyright terms: Public domain W3C validator