ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubop Unicode version

Theorem mosubop 4462
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
mosubop.1  |-  E* x ph
Assertion
Ref Expression
mosubop  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubop
StepHypRef Expression
1 mosubop.1 . . 3  |-  E* x ph
21gen2 1380 . 2  |-  A. y A. z E* x ph
3 mosubopt 4461 . 2  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
42, 3ax-mp 7 1  |-  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 102   A.wal 1283    = wceq 1285   E.wex 1422   E*wmo 1944   <.cop 3425
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431
This theorem is referenced by:  ovi3  5716  ov6g  5717  oprabex3  5835
  Copyright terms: Public domain W3C validator