Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosubop | GIF version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
mosubop.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
2 | 1 | gen2 1443 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
3 | mosubopt 4676 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∀wal 1346 = wceq 1348 ∃wex 1485 ∃*wmo 2020 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: ovi3 5989 ov6g 5990 oprabex3 6108 axaddf 7830 axmulf 7831 |
Copyright terms: Public domain | W3C validator |