Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosubop | GIF version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
mosubop.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
2 | 1 | gen2 1430 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
3 | mosubopt 4650 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∀wal 1333 = wceq 1335 ∃wex 1472 ∃*wmo 2007 〈cop 3563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 |
This theorem is referenced by: ovi3 5954 ov6g 5955 oprabex3 6074 axaddf 7782 axmulf 7783 |
Copyright terms: Public domain | W3C validator |