| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosubop | GIF version | ||
| Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| mosubop.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
| 2 | 1 | gen2 1473 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
| 3 | mosubopt 4740 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∀wal 1371 = wceq 1373 ∃wex 1515 ∃*wmo 2055 〈cop 3636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: ovi3 6083 ov6g 6084 oprabex3 6214 axaddf 7981 axmulf 7982 |
| Copyright terms: Public domain | W3C validator |