| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosubop | GIF version | ||
| Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| mosubop.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
| 2 | 1 | gen2 1496 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
| 3 | mosubopt 4784 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∀wal 1393 = wceq 1395 ∃wex 1538 ∃*wmo 2078 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: ovi3 6142 ov6g 6143 oprabex3 6274 axaddf 8055 axmulf 8056 |
| Copyright terms: Public domain | W3C validator |