ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulf Unicode version

Theorem axmulf 7953
Description: Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 8019 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 8023. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axmulf  |-  x.  :
( CC  X.  CC )
--> CC

Proof of Theorem axmulf
Dummy variables  a  b  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 2939 . . . . . . . . 9  |-  E* z 
z  =  <. (
( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.
21mosubop 4730 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )
32mosubop 4730 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)
4 anass 401 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
542exbii 1620 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
6 19.42vv 1926 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
75, 6bitri 184 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
872exbii 1620 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
98mobii 2082 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
103, 9mpbir 146 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )
1110moani 2115 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)
1211funoprab 6026 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
13 df-mul 7908 . . . . 5  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
1413funeqi 5280 . . . 4  |-  ( Fun 
x. 
<->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) } )
1512, 14mpbir 146 . . 3  |-  Fun  x.
1613dmeqi 4868 . . . . 5  |-  dom  x.  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) }
17 dmoprabss 6008 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3216 . . . 4  |-  dom  x.  C_  ( CC  X.  CC )
19 cnm 7916 . . . . . . 7  |-  ( a  e.  CC  ->  E. b 
b  e.  a )
2019adantl 277 . . . . . 6  |-  ( ( T.  /\  a  e.  CC )  ->  E. b 
b  e.  a )
21 axmulcl 7950 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2221adantl 277 . . . . . 6  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
23 funrel 5276 . . . . . . 7  |-  ( Fun 
x.  ->  Rel  x.  )
2415, 23mp1i 10 . . . . . 6  |-  ( T. 
->  Rel  x.  )
2520, 22, 24oprssdmm 6238 . . . . 5  |-  ( T. 
->  ( CC  X.  CC )  C_  dom  x.  )
2625mptru 1373 . . . 4  |-  ( CC 
X.  CC )  C_  dom  x.
2718, 26eqssi 3200 . . 3  |-  dom  x.  =  ( CC  X.  CC )
28 df-fn 5262 . . 3  |-  (  x.  Fn  ( CC  X.  CC )  <->  ( Fun  x.  /\  dom  x.  =  ( CC  X.  CC ) ) )
2915, 27, 28mpbir2an 944 . 2  |-  x.  Fn  ( CC  X.  CC )
3021rgen2a 2551 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC
31 ffnov 6030 . 2  |-  (  x.  : ( CC  X.  CC ) --> CC  <->  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC ) )
3229, 30, 31mpbir2an 944 1  |-  x.  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   T. wtru 1365   E.wex 1506   E*wmo 2046    e. wcel 2167   A.wral 2475    C_ wss 3157   <.cop 3626    X. cxp 4662   dom cdm 4664   Rel wrel 4669   Fun wfun 5253    Fn wfn 5254   -->wf 5255  (class class class)co 5925   {coprab 5926   -1Rcm1r 7384    +R cplr 7385    .R cmr 7386   CCcc 7894    x. cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-enr 7810  df-nr 7811  df-plr 7812  df-mr 7813  df-m1r 7817  df-c 7902  df-mul 7908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator