ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulf Unicode version

Theorem axmulf 7929
Description: Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 7926. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 7995. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axmulf  |-  x.  :
( CC  X.  CC )
--> CC

Proof of Theorem axmulf
Dummy variables  a  b  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 2935 . . . . . . . . 9  |-  E* z 
z  =  <. (
( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.
21mosubop 4725 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )
32mosubop 4725 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)
4 anass 401 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
542exbii 1617 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
6 19.42vv 1923 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
75, 6bitri 184 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
872exbii 1617 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
98mobii 2079 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
103, 9mpbir 146 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )
1110moani 2112 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)
1211funoprab 6018 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
13 df-mul 7884 . . . . 5  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
1413funeqi 5275 . . . 4  |-  ( Fun 
x. 
<->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) } )
1512, 14mpbir 146 . . 3  |-  Fun  x.
1613dmeqi 4863 . . . . 5  |-  dom  x.  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) }
17 dmoprabss 6000 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3211 . . . 4  |-  dom  x.  C_  ( CC  X.  CC )
19 cnm 7892 . . . . . . 7  |-  ( a  e.  CC  ->  E. b 
b  e.  a )
2019adantl 277 . . . . . 6  |-  ( ( T.  /\  a  e.  CC )  ->  E. b 
b  e.  a )
21 axmulcl 7926 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2221adantl 277 . . . . . 6  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
23 funrel 5271 . . . . . . 7  |-  ( Fun 
x.  ->  Rel  x.  )
2415, 23mp1i 10 . . . . . 6  |-  ( T. 
->  Rel  x.  )
2520, 22, 24oprssdmm 6224 . . . . 5  |-  ( T. 
->  ( CC  X.  CC )  C_  dom  x.  )
2625mptru 1373 . . . 4  |-  ( CC 
X.  CC )  C_  dom  x.
2718, 26eqssi 3195 . . 3  |-  dom  x.  =  ( CC  X.  CC )
28 df-fn 5257 . . 3  |-  (  x.  Fn  ( CC  X.  CC )  <->  ( Fun  x.  /\  dom  x.  =  ( CC  X.  CC ) ) )
2915, 27, 28mpbir2an 944 . 2  |-  x.  Fn  ( CC  X.  CC )
3021rgen2a 2548 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC
31 ffnov 6022 . 2  |-  (  x.  : ( CC  X.  CC ) --> CC  <->  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC ) )
3229, 30, 31mpbir2an 944 1  |-  x.  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   T. wtru 1365   E.wex 1503   E*wmo 2043    e. wcel 2164   A.wral 2472    C_ wss 3153   <.cop 3621    X. cxp 4657   dom cdm 4659   Rel wrel 4664   Fun wfun 5248    Fn wfn 5249   -->wf 5250  (class class class)co 5918   {coprab 5919   -1Rcm1r 7360    +R cplr 7361    .R cmr 7362   CCcc 7870    x. cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-enr 7786  df-nr 7787  df-plr 7788  df-mr 7789  df-m1r 7793  df-c 7878  df-mul 7884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator