![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an2i | Unicode version |
Description: mp3an 1348 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an2i.1 |
![]() ![]() |
mp3an2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an2i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an2i.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp3an2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mp3an2i.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mp3an2i.1 |
. . 3
![]() ![]() | |
4 | mp3an2i.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mp3an1 1335 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mapen 6902 mapxpen 6904 en2eleq 7255 nnledivrp 9832 xsubge0 9947 iccen 10072 fldiv4lem1div2uz2 10375 frec2uzsucd 10472 seqp1g 10537 seq3shft 10982 geolim2 11655 geoisum1c 11663 ntrivcvgap 11691 eflegeo 11844 sin01gt0 11905 cos01gt0 11906 gcdn0gt0 12115 uzwodc 12174 divgcdodd 12281 sqpweven 12313 2sqpwodd 12314 pythagtriplem4 12406 pythagtriplem11 12412 pythagtriplem12 12413 pythagtriplem13 12414 pythagtriplem14 12415 pcfac 12488 4sqlemffi 12534 omctfn 12600 ssnnctlemct 12603 topnvalg 12862 imasmulr 12892 imasaddfnlemg 12897 gsumsplit1r 12981 gsumprval 12982 ismhm 13033 mhmex 13034 gsumfzz 13067 scaffng 13805 lss1d 13879 zringinvg 14092 psrplusgg 14162 restbasg 14336 restco 14342 lmfval 14360 cnfval 14362 cnpval 14366 upxp 14440 uptx 14442 txrest 14444 xblm 14585 bdmet 14670 bdmopn 14672 reopnap 14706 cnopnap 14765 maxcncf 14769 mincncf 14770 dvidlemap 14845 dvcj 14858 plyval 14878 plysub 14899 eflt 14910 logdivlti 15016 gausslemma2dlem0i 15173 gausslemma2dlem4 15180 trilpolemisumle 15528 |
Copyright terms: Public domain | W3C validator |