![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an2i | Unicode version |
Description: mp3an 1348 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an2i.1 |
![]() ![]() |
mp3an2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an2i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an2i.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp3an2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mp3an2i.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mp3an2i.1 |
. . 3
![]() ![]() | |
4 | mp3an2i.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mp3an1 1335 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mapen 6904 mapxpen 6906 en2eleq 7257 nnledivrp 9835 xsubge0 9950 iccen 10075 fldiv4lem1div2uz2 10378 frec2uzsucd 10475 seqp1g 10540 seq3shft 10985 geolim2 11658 geoisum1c 11666 ntrivcvgap 11694 eflegeo 11847 sin01gt0 11908 cos01gt0 11909 gcdn0gt0 12118 uzwodc 12177 divgcdodd 12284 sqpweven 12316 2sqpwodd 12317 pythagtriplem4 12409 pythagtriplem11 12415 pythagtriplem12 12416 pythagtriplem13 12417 pythagtriplem14 12418 pcfac 12491 4sqlemffi 12537 omctfn 12603 ssnnctlemct 12606 topnvalg 12865 imasmulr 12895 imasaddfnlemg 12900 gsumsplit1r 12984 gsumprval 12985 ismhm 13036 mhmex 13037 gsumfzz 13070 scaffng 13808 lss1d 13882 zringinvg 14103 psrplusgg 14173 restbasg 14347 restco 14353 lmfval 14371 cnfval 14373 cnpval 14377 upxp 14451 uptx 14453 txrest 14455 xblm 14596 bdmet 14681 bdmopn 14683 reopnap 14725 cnopnap 14790 maxcncf 14794 mincncf 14795 dvidlemap 14870 dvcj 14888 plyval 14911 plysub 14932 eflt 14951 logdivlti 15057 gausslemma2dlem0i 15214 gausslemma2dlem4 15221 lgsquad2lem1 15238 lgsquad2lem2 15239 trilpolemisumle 15598 |
Copyright terms: Public domain | W3C validator |