Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2i | Unicode version |
Description: mp3an 1327 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an2i.1 | |
mp3an2i.2 | |
mp3an2i.3 | |
mp3an2i.4 |
Ref | Expression |
---|---|
mp3an2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2i.2 | . 2 | |
2 | mp3an2i.3 | . 2 | |
3 | mp3an2i.1 | . . 3 | |
4 | mp3an2i.4 | . . 3 | |
5 | 3, 4 | mp3an1 1314 | . 2 |
6 | 1, 2, 5 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mapen 6808 mapxpen 6810 en2eleq 7147 nnledivrp 9698 xsubge0 9813 iccen 9938 frec2uzsucd 10332 seq3shft 10776 geolim2 11449 geoisum1c 11457 ntrivcvgap 11485 eflegeo 11638 sin01gt0 11698 cos01gt0 11699 gcdn0gt0 11907 uzwodc 11966 divgcdodd 12071 sqpweven 12103 2sqpwodd 12104 pythagtriplem4 12196 pythagtriplem11 12202 pythagtriplem12 12203 pythagtriplem13 12204 pythagtriplem14 12205 pcfac 12276 omctfn 12372 ssnnctlemct 12375 ressid 12451 topnvalg 12563 restbasg 12768 restco 12774 lmfval 12792 cnfval 12794 cnpval 12798 upxp 12872 uptx 12874 txrest 12876 xblm 13017 bdmet 13102 bdmopn 13104 reopnap 13138 cnopnap 13194 dvidlemap 13260 dvcj 13273 eflt 13296 logdivlti 13402 trilpolemisumle 13877 |
Copyright terms: Public domain | W3C validator |