| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos02pilt1 | Unicode version | ||
| Description: Cosine is less than one
between zero and |
| Ref | Expression |
|---|---|
| cos02pilt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 10033 |
. . . . . . 7
| |
| 2 | 1 | adantr 276 |
. . . . . 6
|
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | pire 15229 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | simpr 110 |
. . . . . 6
| |
| 7 | 5, 3, 6 | ltled 8190 |
. . . . 5
|
| 8 | 0xr 8118 |
. . . . . . . 8
| |
| 9 | 2re 9105 |
. . . . . . . . . 10
| |
| 10 | 9, 4 | remulcli 8085 |
. . . . . . . . 9
|
| 11 | 10 | rexri 8129 |
. . . . . . . 8
|
| 12 | elioo2 10042 |
. . . . . . . 8
| |
| 13 | 8, 11, 12 | mp2an 426 |
. . . . . . 7
|
| 14 | 13 | simp3bi 1016 |
. . . . . 6
|
| 15 | 14 | ad2antrr 488 |
. . . . 5
|
| 16 | elico2 10058 |
. . . . . 6
| |
| 17 | 4, 11, 16 | mp2an 426 |
. . . . 5
|
| 18 | 3, 7, 15, 17 | syl3anbrc 1183 |
. . . 4
|
| 19 | cosq34lt1 15293 |
. . . 4
| |
| 20 | 18, 19 | syl 14 |
. . 3
|
| 21 | 2 | adantr 276 |
. . . . 5
|
| 22 | simplr 528 |
. . . . 5
| |
| 23 | simpr 110 |
. . . . 5
| |
| 24 | halfpire 15235 |
. . . . . . 7
| |
| 25 | 24 | rexri 8129 |
. . . . . 6
|
| 26 | 3re 9109 |
. . . . . . . 8
| |
| 27 | 26, 24 | remulcli 8085 |
. . . . . . 7
|
| 28 | 27 | rexri 8129 |
. . . . . 6
|
| 29 | elioo2 10042 |
. . . . . 6
| |
| 30 | 25, 28, 29 | mp2an 426 |
. . . . 5
|
| 31 | 21, 22, 23, 30 | syl3anbrc 1183 |
. . . 4
|
| 32 | elioore 10033 |
. . . . . 6
| |
| 33 | 32 | recoscld 12006 |
. . . . 5
|
| 34 | 0red 8072 |
. . . . 5
| |
| 35 | 1red 8086 |
. . . . 5
| |
| 36 | cosq23lt0 15276 |
. . . . 5
| |
| 37 | 0lt1 8198 |
. . . . . 6
| |
| 38 | 37 | a1i 9 |
. . . . 5
|
| 39 | 33, 34, 35, 36, 38 | lttrd 8197 |
. . . 4
|
| 40 | 31, 39 | syl 14 |
. . 3
|
| 41 | 2lt3 9206 |
. . . . . 6
| |
| 42 | 2pos 9126 |
. . . . . . . 8
| |
| 43 | 9, 42 | pm3.2i 272 |
. . . . . . 7
|
| 44 | 3pos 9129 |
. . . . . . . 8
| |
| 45 | 26, 44 | pm3.2i 272 |
. . . . . . 7
|
| 46 | pipos 15231 |
. . . . . . . 8
| |
| 47 | 4, 46 | pm3.2i 272 |
. . . . . . 7
|
| 48 | ltdiv2 8959 |
. . . . . . 7
| |
| 49 | 43, 45, 47, 48 | mp3an 1349 |
. . . . . 6
|
| 50 | 41, 49 | mpbi 145 |
. . . . 5
|
| 51 | ltdivmul 8948 |
. . . . . 6
| |
| 52 | 4, 24, 45, 51 | mp3an 1349 |
. . . . 5
|
| 53 | 50, 52 | mpbi 145 |
. . . 4
|
| 54 | axltwlin 8139 |
. . . . 5
| |
| 55 | 4, 27, 2, 54 | mp3an12i 1353 |
. . . 4
|
| 56 | 53, 55 | mpi 15 |
. . 3
|
| 57 | 20, 40, 56 | mpjaodan 799 |
. 2
|
| 58 | 4 | rexri 8129 |
. . . . . 6
|
| 59 | 0re 8071 |
. . . . . . 7
| |
| 60 | 59, 4, 46 | ltleii 8174 |
. . . . . 6
|
| 61 | lbicc2 10105 |
. . . . . 6
| |
| 62 | 8, 58, 60, 61 | mp3an 1349 |
. . . . 5
|
| 63 | 62 | a1i 9 |
. . . 4
|
| 64 | 1 | adantr 276 |
. . . . 5
|
| 65 | 0red 8072 |
. . . . . 6
| |
| 66 | 13 | simp2bi 1015 |
. . . . . . 7
|
| 67 | 66 | adantr 276 |
. . . . . 6
|
| 68 | 65, 64, 67 | ltled 8190 |
. . . . 5
|
| 69 | 4 | a1i 9 |
. . . . . 6
|
| 70 | simpr 110 |
. . . . . 6
| |
| 71 | 64, 69, 70 | ltled 8190 |
. . . . 5
|
| 72 | 59, 4 | elicc2i 10060 |
. . . . 5
|
| 73 | 64, 68, 71, 72 | syl3anbrc 1183 |
. . . 4
|
| 74 | 63, 73, 67 | cosordlem 15292 |
. . 3
|
| 75 | cos0 12012 |
. . 3
| |
| 76 | 74, 75 | breqtrdi 4084 |
. 2
|
| 77 | pirp 15232 |
. . . 4
| |
| 78 | rphalflt 9804 |
. . . 4
| |
| 79 | 77, 78 | ax-mp 5 |
. . 3
|
| 80 | axltwlin 8139 |
. . . 4
| |
| 81 | 24, 4, 1, 80 | mp3an12i 1353 |
. . 3
|
| 82 | 79, 81 | mpi 15 |
. 2
|
| 83 | 57, 76, 82 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-map 6736 df-pm 6737 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-ioo 10013 df-ioc 10014 df-ico 10015 df-icc 10016 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11097 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 df-ef 11930 df-sin 11932 df-cos 11933 df-pi 11935 df-rest 13044 df-topgen 13063 df-psmet 14276 df-xmet 14277 df-met 14278 df-bl 14279 df-mopn 14280 df-top 14441 df-topon 14454 df-bases 14486 df-ntr 14539 df-cn 14631 df-cnp 14632 df-tx 14696 df-cncf 15014 df-limced 15099 df-dvap 15100 |
| This theorem is referenced by: cos0pilt1 15295 taupi 15974 |
| Copyright terms: Public domain | W3C validator |