ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos02pilt1 Unicode version

Theorem cos02pilt1 15323
Description: Cosine is less than one between zero and  2  x.  pi. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cos02pilt1  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )

Proof of Theorem cos02pilt1
StepHypRef Expression
1 elioore 10034 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  A  e.  RR )
21adantr 276 . . . . . 6  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  /  2
)  <  A )  ->  A  e.  RR )
32adantr 276 . . . . 5  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  A  e.  RR )
4 pire 15258 . . . . . . 7  |-  pi  e.  RR
54a1i 9 . . . . . 6  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  pi  e.  RR )
6 simpr 110 . . . . . 6  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  pi  <  A )
75, 3, 6ltled 8191 . . . . 5  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  pi  <_  A )
8 0xr 8119 . . . . . . . 8  |-  0  e.  RR*
9 2re 9106 . . . . . . . . . 10  |-  2  e.  RR
109, 4remulcli 8086 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  RR
1110rexri 8130 . . . . . . . 8  |-  ( 2  x.  pi )  e. 
RR*
12 elioo2 10043 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  ( 2  x.  pi ) ) ) )
138, 11, 12mp2an 426 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  ( 2  x.  pi ) ) )
1413simp3bi 1017 . . . . . 6  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  A  <  ( 2  x.  pi ) )
1514ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  A  <  ( 2  x.  pi ) )
16 elico2 10059 . . . . . 6  |-  ( ( pi  e.  RR  /\  ( 2  x.  pi )  e.  RR* )  -> 
( A  e.  ( pi [,) ( 2  x.  pi ) )  <-> 
( A  e.  RR  /\  pi  <_  A  /\  A  <  ( 2  x.  pi ) ) ) )
174, 11, 16mp2an 426 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  pi  <_  A  /\  A  <  (
2  x.  pi ) ) )
183, 7, 15, 17syl3anbrc 1184 . . . 4  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  A  e.  ( pi [,) ( 2  x.  pi ) ) )
19 cosq34lt1 15322 . . . 4  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
2018, 19syl 14 . . 3  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  pi  <  A )  ->  ( cos `  A )  <  1
)
212adantr 276 . . . . 5  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) )  ->  A  e.  RR )
22 simplr 528 . . . . 5  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) )  ->  ( pi  /  2 )  <  A
)
23 simpr 110 . . . . 5  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) )  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
24 halfpire 15264 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR
2524rexri 8130 . . . . . 6  |-  ( pi 
/  2 )  e. 
RR*
26 3re 9110 . . . . . . . 8  |-  3  e.  RR
2726, 24remulcli 8086 . . . . . . 7  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
2827rexri 8130 . . . . . 6  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
29 elioo2 10043 . . . . . 6  |-  ( ( ( pi  /  2
)  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) ) )
3025, 28, 29mp2an 426 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) )
3121, 22, 23, 30syl3anbrc 1184 . . . 4  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) )  ->  A  e.  ( ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
32 elioore 10034 . . . . . 6  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  A  e.  RR )
3332recoscld 12035 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  e.  RR )
34 0red 8073 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  0  e.  RR )
35 1red 8087 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  1  e.  RR )
36 cosq23lt0 15305 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  <  0 )
37 0lt1 8199 . . . . . 6  |-  0  <  1
3837a1i 9 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  0  <  1 )
3933, 34, 35, 36, 38lttrd 8198 . . . 4  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  <  1 )
4031, 39syl 14 . . 3  |-  ( ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) )  ->  ( cos `  A )  <  1
)
41 2lt3 9207 . . . . . 6  |-  2  <  3
42 2pos 9127 . . . . . . . 8  |-  0  <  2
439, 42pm3.2i 272 . . . . . . 7  |-  ( 2  e.  RR  /\  0  <  2 )
44 3pos 9130 . . . . . . . 8  |-  0  <  3
4526, 44pm3.2i 272 . . . . . . 7  |-  ( 3  e.  RR  /\  0  <  3 )
46 pipos 15260 . . . . . . . 8  |-  0  <  pi
474, 46pm3.2i 272 . . . . . . 7  |-  ( pi  e.  RR  /\  0  <  pi )
48 ltdiv2 8960 . . . . . . 7  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  3  <->  ( pi  / 
3 )  <  (
pi  /  2 ) ) )
4943, 45, 47, 48mp3an 1350 . . . . . 6  |-  ( 2  <  3  <->  ( pi  /  3 )  <  (
pi  /  2 ) )
5041, 49mpbi 145 . . . . 5  |-  ( pi 
/  3 )  < 
( pi  /  2
)
51 ltdivmul 8949 . . . . . 6  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  ( (
pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) ) )
524, 24, 45, 51mp3an 1350 . . . . 5  |-  ( ( pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
5350, 52mpbi 145 . . . 4  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
54 axltwlin 8140 . . . . 5  |-  ( ( pi  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR  /\  A  e.  RR )  ->  ( pi  <  (
3  x.  ( pi 
/  2 ) )  ->  ( pi  <  A  \/  A  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
554, 27, 2, 54mp3an12i 1354 . . . 4  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  /  2
)  <  A )  ->  ( pi  <  (
3  x.  ( pi 
/  2 ) )  ->  ( pi  <  A  \/  A  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
5653, 55mpi 15 . . 3  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  /  2
)  <  A )  ->  ( pi  <  A  \/  A  <  ( 3  x.  ( pi  / 
2 ) ) ) )
5720, 40, 56mpjaodan 800 . 2  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  ( pi  /  2
)  <  A )  ->  ( cos `  A
)  <  1 )
584rexri 8130 . . . . . 6  |-  pi  e.  RR*
59 0re 8072 . . . . . . 7  |-  0  e.  RR
6059, 4, 46ltleii 8175 . . . . . 6  |-  0  <_  pi
61 lbicc2 10106 . . . . . 6  |-  ( ( 0  e.  RR*  /\  pi  e.  RR*  /\  0  <_  pi )  ->  0  e.  ( 0 [,] pi ) )
628, 58, 60, 61mp3an 1350 . . . . 5  |-  0  e.  ( 0 [,] pi )
6362a1i 9 . . . 4  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  -> 
0  e.  ( 0 [,] pi ) )
641adantr 276 . . . . 5  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  ->  A  e.  RR )
65 0red 8073 . . . . . 6  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  -> 
0  e.  RR )
6613simp2bi 1016 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  0  <  A )
6766adantr 276 . . . . . 6  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  -> 
0  <  A )
6865, 64, 67ltled 8191 . . . . 5  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  -> 
0  <_  A )
694a1i 9 . . . . . 6  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  ->  pi  e.  RR )
70 simpr 110 . . . . . 6  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  ->  A  <  pi )
7164, 69, 70ltled 8191 . . . . 5  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  ->  A  <_  pi )
7259, 4elicc2i 10061 . . . . 5  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
7364, 68, 71, 72syl3anbrc 1184 . . . 4  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  ->  A  e.  ( 0 [,] pi ) )
7463, 73, 67cosordlem 15321 . . 3  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  -> 
( cos `  A
)  <  ( cos `  0 ) )
75 cos0 12041 . . 3  |-  ( cos `  0 )  =  1
7674, 75breqtrdi 4085 . 2  |-  ( ( A  e.  ( 0 (,) ( 2  x.  pi ) )  /\  A  <  pi )  -> 
( cos `  A
)  <  1 )
77 pirp 15261 . . . 4  |-  pi  e.  RR+
78 rphalflt 9805 . . . 4  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
7977, 78ax-mp 5 . . 3  |-  ( pi 
/  2 )  < 
pi
80 axltwlin 8140 . . . 4  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR  /\  A  e.  RR )  ->  (
( pi  /  2
)  <  pi  ->  ( ( pi  /  2
)  <  A  \/  A  <  pi ) ) )
8124, 4, 1, 80mp3an12i 1354 . . 3  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  (
( pi  /  2
)  <  pi  ->  ( ( pi  /  2
)  <  A  \/  A  <  pi ) ) )
8279, 81mpi 15 . 2  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  (
( pi  /  2
)  <  A  \/  A  <  pi ) )
8357, 76, 82mpjaodan 800 1  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930   RR*cxr 8106    < clt 8107    <_ cle 8108    / cdiv 8745   2c2 9087   3c3 9088   RR+crp 9775   (,)cioo 10010   [,)cico 10012   [,]cicc 10013   cosccos 11956   picpi 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ioc 10015  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-sin 11961  df-cos 11962  df-pi 11964  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  cos0pilt1  15324  taupi  16012
  Copyright terms: Public domain W3C validator