ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge0 Unicode version

Theorem fprodge0 11578
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge0.kph  |-  F/ k
ph
fprodge0.a  |-  ( ph  ->  A  e.  Fin )
fprodge0.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodge0.0leb  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fprodge0  |-  ( ph  ->  0  <_  prod_ k  e.  A  B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodge0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7945 . 2  |-  0  e.  RR*
2 pnfxr 7951 . 2  |- +oo  e.  RR*
3 fprodge0.kph . . 3  |-  F/ k
ph
4 rge0ssre 9913 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
5 ax-resscn 7845 . . . . 5  |-  RR  C_  CC
64, 5sstri 3151 . . . 4  |-  ( 0 [,) +oo )  C_  CC
76a1i 9 . . 3  |-  ( ph  ->  ( 0 [,) +oo )  C_  CC )
8 ge0mulcl 9918 . . . 4  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 0 [,) +oo )
)
98adantl 275 . . 3  |-  ( (
ph  /\  ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 0 [,) +oo ) )
10 fprodge0.a . . 3  |-  ( ph  ->  A  e.  Fin )
11 fprodge0.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
12 fprodge0.0leb . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
13 elrege0 9912 . . . 4  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
1411, 12, 13sylanbrc 414 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,) +oo ) )
15 1re 7898 . . . . 5  |-  1  e.  RR
16 0le1 8379 . . . . 5  |-  0  <_  1
17 ltpnf 9716 . . . . . 6  |-  ( 1  e.  RR  ->  1  < +oo )
1815, 17ax-mp 5 . . . . 5  |-  1  < +oo
19 0re 7899 . . . . . 6  |-  0  e.  RR
20 elico2 9873 . . . . . 6  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_  1  /\  1  < +oo ) ) )
2119, 2, 20mp2an 423 . . . . 5  |-  ( 1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_ 
1  /\  1  < +oo ) )
2215, 16, 18, 21mpbir3an 1169 . . . 4  |-  1  e.  ( 0 [,) +oo )
2322a1i 9 . . 3  |-  ( ph  ->  1  e.  ( 0 [,) +oo ) )
243, 7, 9, 10, 14, 23fprodcllemf 11554 . 2  |-  ( ph  ->  prod_ k  e.  A  B  e.  ( 0 [,) +oo ) )
25 icogelb 10201 . 2  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  prod_ k  e.  A  B  e.  ( 0 [,) +oo ) )  ->  0  <_  prod_ k  e.  A  B )
261, 2, 24, 25mp3an12i 1331 1  |-  ( ph  ->  0  <_  prod_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968   F/wnf 1448    e. wcel 2136    C_ wss 3116   class class class wbr 3982  (class class class)co 5842   Fincfn 6706   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758   +oocpnf 7930   RR*cxr 7932    < clt 7933    <_ cle 7934   [,)cico 9826   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodle  11581
  Copyright terms: Public domain W3C validator