ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge0 Unicode version

Theorem fprodge0 11658
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge0.kph  |-  F/ k
ph
fprodge0.a  |-  ( ph  ->  A  e.  Fin )
fprodge0.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodge0.0leb  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fprodge0  |-  ( ph  ->  0  <_  prod_ k  e.  A  B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodge0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8017 . 2  |-  0  e.  RR*
2 pnfxr 8023 . 2  |- +oo  e.  RR*
3 fprodge0.kph . . 3  |-  F/ k
ph
4 rge0ssre 9990 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
5 ax-resscn 7916 . . . . 5  |-  RR  C_  CC
64, 5sstri 3176 . . . 4  |-  ( 0 [,) +oo )  C_  CC
76a1i 9 . . 3  |-  ( ph  ->  ( 0 [,) +oo )  C_  CC )
8 ge0mulcl 9995 . . . 4  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 0 [,) +oo )
)
98adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 0 [,) +oo ) )
10 fprodge0.a . . 3  |-  ( ph  ->  A  e.  Fin )
11 fprodge0.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
12 fprodge0.0leb . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
13 elrege0 9989 . . . 4  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
1411, 12, 13sylanbrc 417 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,) +oo ) )
15 1re 7969 . . . . 5  |-  1  e.  RR
16 0le1 8451 . . . . 5  |-  0  <_  1
17 ltpnf 9793 . . . . . 6  |-  ( 1  e.  RR  ->  1  < +oo )
1815, 17ax-mp 5 . . . . 5  |-  1  < +oo
19 0re 7970 . . . . . 6  |-  0  e.  RR
20 elico2 9950 . . . . . 6  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_  1  /\  1  < +oo ) ) )
2119, 2, 20mp2an 426 . . . . 5  |-  ( 1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_ 
1  /\  1  < +oo ) )
2215, 16, 18, 21mpbir3an 1180 . . . 4  |-  1  e.  ( 0 [,) +oo )
2322a1i 9 . . 3  |-  ( ph  ->  1  e.  ( 0 [,) +oo ) )
243, 7, 9, 10, 14, 23fprodcllemf 11634 . 2  |-  ( ph  ->  prod_ k  e.  A  B  e.  ( 0 [,) +oo ) )
25 icogelb 10279 . 2  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  prod_ k  e.  A  B  e.  ( 0 [,) +oo ) )  ->  0  <_  prod_ k  e.  A  B )
261, 2, 24, 25mp3an12i 1351 1  |-  ( ph  ->  0  <_  prod_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979   F/wnf 1470    e. wcel 2158    C_ wss 3141   class class class wbr 4015  (class class class)co 5888   Fincfn 6753   CCcc 7822   RRcr 7823   0cc0 7824   1c1 7825    x. cmul 7829   +oocpnf 8002   RR*cxr 8004    < clt 8005    <_ cle 8006   [,)cico 9903   prod_cprod 11571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-ico 9907  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-proddc 11572
This theorem is referenced by:  fprodle  11661
  Copyright terms: Public domain W3C validator