ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem1 Unicode version

Theorem pythagtriplem1 12219
Description: Lemma for pythagtrip 12237. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Distinct variable groups:    A, n, m, k    B, n, m, k    C, n, m, k

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 8886 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2 nncn 8886 . . . . . 6  |-  ( m  e.  NN  ->  m  e.  CC )
3 nncn 8886 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  CC )
4 sqcl 10537 . . . . . . . . . . . . . . 15  |-  ( m  e.  CC  ->  (
m ^ 2 )  e.  CC )
54adantl 275 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m ^ 2 )  e.  CC )
65sqcld 10607 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 ) ^ 2 )  e.  CC )
7 2cn 8949 . . . . . . . . . . . . . 14  |-  2  e.  CC
8 sqcl 10537 . . . . . . . . . . . . . . 15  |-  ( n  e.  CC  ->  (
n ^ 2 )  e.  CC )
9 mulcl 7901 . . . . . . . . . . . . . . 15  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )
104, 8, 9syl2anr 288 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )
11 mulcl 7901 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )  ->  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  e.  CC )
127, 10, 11sylancr 412 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  e.  CC )
136, 12subcld 8230 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  e.  CC )
148adantr 274 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n ^ 2 )  e.  CC )
1514sqcld 10607 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( n ^
2 ) ^ 2 )  e.  CC )
16 mulcl 7901 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( m  x.  n
)  e.  CC )
1716ancoms 266 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m  x.  n
)  e.  CC )
18 mulcl 7901 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( 2  x.  ( m  x.  n
) )  e.  CC )
197, 17, 18sylancr 412 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
m  x.  n ) )  e.  CC )
2019sqcld 10607 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  e.  CC )
2113, 15, 20add32d 8087 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
226, 12, 20subadd23d 8252 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( ( ( 2  x.  ( m  x.  n ) ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) ) )
23 sqmul 10538 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( ( 2  x.  ( m  x.  n ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^ 2 ) ) )
247, 17, 23sylancr 412 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^
2 ) ) )
25 sq2 10571 . . . . . . . . . . . . . . . . . . 19  |-  ( 2 ^ 2 )  =  4
2625a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2 ^ 2 )  =  4 )
27 sqmul 10538 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2827ancoms 266 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2926, 28oveq12d 5871 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2 ^ 2 )  x.  (
( m  x.  n
) ^ 2 ) )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3024, 29eqtrd 2203 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3130oveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
32 4cn 8956 . . . . . . . . . . . . . . . . 17  |-  4  e.  CC
33 subdir 8305 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  CC  /\  2  e.  CC  /\  (
( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )  -> 
( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
3432, 7, 10, 33mp3an12i 1336 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
35 2p2e4 9005 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  2 )  =  4
3632, 7, 7, 35subaddrii 8208 . . . . . . . . . . . . . . . . 17  |-  ( 4  -  2 )  =  2
3736oveq1i 5863 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  2 )  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )
3834, 37eqtr3di 2218 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3931, 38eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
4039oveq2d 5869 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  +  ( ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4122, 40eqtrd 2203 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4241oveq1d 5868 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4321, 42eqtrd 2203 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
44 binom2sub 10589 . . . . . . . . . . . 12  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
454, 8, 44syl2anr 288 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4645oveq1d 5868 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )
47 binom2 10587 . . . . . . . . . . 11  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
484, 8, 47syl2anr 288 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4943, 46, 483eqtr4d 2213 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) )
50493adant3 1012 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 ) )
5150oveq2d 5869 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
52 simp3 994 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  k  e.  CC )
5343ad2ant2 1014 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m ^ 2 )  e.  CC )
5483ad2ant1 1013 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
n ^ 2 )  e.  CC )
5553, 54subcld 8230 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  -  ( n ^ 2 ) )  e.  CC )
5652, 55sqmuld 10621 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 ) ) )
57173adant3 1012 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m  x.  n )  e.  CC )
587, 57, 18sylancr 412 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
2  x.  ( m  x.  n ) )  e.  CC )
5952, 58sqmuld 10621 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) ) )
6056, 59oveq12d 5871 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
61 sqcl 10537 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
k ^ 2 )  e.  CC )
62613ad2ant3 1015 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
k ^ 2 )  e.  CC )
6355sqcld 10607 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  e.  CC )
6458sqcld 10607 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( 2  x.  (
m  x.  n ) ) ^ 2 )  e.  CC )
6562, 63, 64adddid 7944 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6660, 65eqtr4d 2206 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k ^ 2 )  x.  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6753, 54addcld 7939 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  +  ( n ^ 2 ) )  e.  CC )
6852, 67sqmuld 10621 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
6951, 66, 683eqtr4d 2213 . . . . . 6  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
701, 2, 3, 69syl3an 1275 . . . . 5  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
71 oveq1 5860 . . . . . . . 8  |-  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  ->  ( A ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 ) )
72 oveq1 5860 . . . . . . . 8  |-  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  ->  ( B ^ 2 )  =  ( ( k  x.  ( 2  x.  (
m  x.  n ) ) ) ^ 2 ) )
7371, 72oveqan12d 5872 . . . . . . 7  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
74733adant3 1012 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
75 oveq1 5860 . . . . . . 7  |-  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  ->  ( C ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ^ 2 ) )
76753ad2ant3 1015 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( C ^ 2 )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) )
7774, 76eqeq12d 2185 . . . . 5  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <-> 
( ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) ) ^
2 )  +  ( ( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) ) )
7870, 77syl5ibrcom 156 . . . 4  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
79783expa 1198 . . 3  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
8079rexlimdva 2587 . 2  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
8180rexlimivv 2593 1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449  (class class class)co 5853   CCcc 7772    + caddc 7777    x. cmul 7779    - cmin 8090   NNcn 8878   2c2 8929   4c4 8931   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  pythagtriplem2  12220
  Copyright terms: Public domain W3C validator