ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem1 Unicode version

Theorem pythagtriplem1 12406
Description: Lemma for pythagtrip 12424. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Distinct variable groups:    A, n, m, k    B, n, m, k    C, n, m, k

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 8992 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2 nncn 8992 . . . . . 6  |-  ( m  e.  NN  ->  m  e.  CC )
3 nncn 8992 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  CC )
4 sqcl 10674 . . . . . . . . . . . . . . 15  |-  ( m  e.  CC  ->  (
m ^ 2 )  e.  CC )
54adantl 277 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m ^ 2 )  e.  CC )
65sqcld 10745 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 ) ^ 2 )  e.  CC )
7 2cn 9055 . . . . . . . . . . . . . 14  |-  2  e.  CC
8 sqcl 10674 . . . . . . . . . . . . . . 15  |-  ( n  e.  CC  ->  (
n ^ 2 )  e.  CC )
9 mulcl 8001 . . . . . . . . . . . . . . 15  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )
104, 8, 9syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )
11 mulcl 8001 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )  ->  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  e.  CC )
127, 10, 11sylancr 414 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  e.  CC )
136, 12subcld 8332 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  e.  CC )
148adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n ^ 2 )  e.  CC )
1514sqcld 10745 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( n ^
2 ) ^ 2 )  e.  CC )
16 mulcl 8001 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( m  x.  n
)  e.  CC )
1716ancoms 268 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m  x.  n
)  e.  CC )
18 mulcl 8001 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( 2  x.  ( m  x.  n
) )  e.  CC )
197, 17, 18sylancr 414 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
m  x.  n ) )  e.  CC )
2019sqcld 10745 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  e.  CC )
2113, 15, 20add32d 8189 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
226, 12, 20subadd23d 8354 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( ( ( 2  x.  ( m  x.  n ) ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) ) )
23 sqmul 10675 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( ( 2  x.  ( m  x.  n ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^ 2 ) ) )
247, 17, 23sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^
2 ) ) )
25 sq2 10709 . . . . . . . . . . . . . . . . . . 19  |-  ( 2 ^ 2 )  =  4
2625a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2 ^ 2 )  =  4 )
27 sqmul 10675 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2827ancoms 268 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2926, 28oveq12d 5937 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2 ^ 2 )  x.  (
( m  x.  n
) ^ 2 ) )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3024, 29eqtrd 2226 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3130oveq1d 5934 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
32 4cn 9062 . . . . . . . . . . . . . . . . 17  |-  4  e.  CC
33 subdir 8407 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  CC  /\  2  e.  CC  /\  (
( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )  -> 
( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
3432, 7, 10, 33mp3an12i 1352 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
35 2p2e4 9111 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  2 )  =  4
3632, 7, 7, 35subaddrii 8310 . . . . . . . . . . . . . . . . 17  |-  ( 4  -  2 )  =  2
3736oveq1i 5929 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  2 )  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )
3834, 37eqtr3di 2241 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3931, 38eqtrd 2226 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
4039oveq2d 5935 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  +  ( ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4122, 40eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4241oveq1d 5934 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4321, 42eqtrd 2226 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
44 binom2sub 10727 . . . . . . . . . . . 12  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
454, 8, 44syl2anr 290 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4645oveq1d 5934 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )
47 binom2 10725 . . . . . . . . . . 11  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
484, 8, 47syl2anr 290 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4943, 46, 483eqtr4d 2236 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) )
50493adant3 1019 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 ) )
5150oveq2d 5935 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
52 simp3 1001 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  k  e.  CC )
5343ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m ^ 2 )  e.  CC )
5483ad2ant1 1020 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
n ^ 2 )  e.  CC )
5553, 54subcld 8332 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  -  ( n ^ 2 ) )  e.  CC )
5652, 55sqmuld 10759 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 ) ) )
57173adant3 1019 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m  x.  n )  e.  CC )
587, 57, 18sylancr 414 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
2  x.  ( m  x.  n ) )  e.  CC )
5952, 58sqmuld 10759 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) ) )
6056, 59oveq12d 5937 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
61 sqcl 10674 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
k ^ 2 )  e.  CC )
62613ad2ant3 1022 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
k ^ 2 )  e.  CC )
6355sqcld 10745 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  e.  CC )
6458sqcld 10745 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( 2  x.  (
m  x.  n ) ) ^ 2 )  e.  CC )
6562, 63, 64adddid 8046 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6660, 65eqtr4d 2229 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k ^ 2 )  x.  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6753, 54addcld 8041 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  +  ( n ^ 2 ) )  e.  CC )
6852, 67sqmuld 10759 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
6951, 66, 683eqtr4d 2236 . . . . . 6  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
701, 2, 3, 69syl3an 1291 . . . . 5  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
71 oveq1 5926 . . . . . . . 8  |-  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  ->  ( A ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 ) )
72 oveq1 5926 . . . . . . . 8  |-  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  ->  ( B ^ 2 )  =  ( ( k  x.  ( 2  x.  (
m  x.  n ) ) ) ^ 2 ) )
7371, 72oveqan12d 5938 . . . . . . 7  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
74733adant3 1019 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
75 oveq1 5926 . . . . . . 7  |-  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  ->  ( C ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ^ 2 ) )
76753ad2ant3 1022 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( C ^ 2 )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) )
7774, 76eqeq12d 2208 . . . . 5  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <-> 
( ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) ) ^
2 )  +  ( ( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) ) )
7870, 77syl5ibrcom 157 . . . 4  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
79783expa 1205 . . 3  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
8079rexlimdva 2611 . 2  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
8180rexlimivv 2617 1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473  (class class class)co 5919   CCcc 7872    + caddc 7877    x. cmul 7879    - cmin 8192   NNcn 8984   2c2 9035   4c4 9037   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  pythagtriplem2  12407
  Copyright terms: Public domain W3C validator