ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem1 Unicode version

Theorem pythagtriplem1 12267
Description: Lemma for pythagtrip 12285. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Distinct variable groups:    A, n, m, k    B, n, m, k    C, n, m, k

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 8929 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2 nncn 8929 . . . . . 6  |-  ( m  e.  NN  ->  m  e.  CC )
3 nncn 8929 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  CC )
4 sqcl 10583 . . . . . . . . . . . . . . 15  |-  ( m  e.  CC  ->  (
m ^ 2 )  e.  CC )
54adantl 277 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m ^ 2 )  e.  CC )
65sqcld 10654 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 ) ^ 2 )  e.  CC )
7 2cn 8992 . . . . . . . . . . . . . 14  |-  2  e.  CC
8 sqcl 10583 . . . . . . . . . . . . . . 15  |-  ( n  e.  CC  ->  (
n ^ 2 )  e.  CC )
9 mulcl 7940 . . . . . . . . . . . . . . 15  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )
104, 8, 9syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )
11 mulcl 7940 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )  ->  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  e.  CC )
127, 10, 11sylancr 414 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  e.  CC )
136, 12subcld 8270 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  e.  CC )
148adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n ^ 2 )  e.  CC )
1514sqcld 10654 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( n ^
2 ) ^ 2 )  e.  CC )
16 mulcl 7940 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( m  x.  n
)  e.  CC )
1716ancoms 268 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m  x.  n
)  e.  CC )
18 mulcl 7940 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( 2  x.  ( m  x.  n
) )  e.  CC )
197, 17, 18sylancr 414 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
m  x.  n ) )  e.  CC )
2019sqcld 10654 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  e.  CC )
2113, 15, 20add32d 8127 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
226, 12, 20subadd23d 8292 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( ( ( 2  x.  ( m  x.  n ) ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) ) )
23 sqmul 10584 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( ( 2  x.  ( m  x.  n ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^ 2 ) ) )
247, 17, 23sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^
2 ) ) )
25 sq2 10618 . . . . . . . . . . . . . . . . . . 19  |-  ( 2 ^ 2 )  =  4
2625a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2 ^ 2 )  =  4 )
27 sqmul 10584 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2827ancoms 268 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2926, 28oveq12d 5895 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2 ^ 2 )  x.  (
( m  x.  n
) ^ 2 ) )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3024, 29eqtrd 2210 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3130oveq1d 5892 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
32 4cn 8999 . . . . . . . . . . . . . . . . 17  |-  4  e.  CC
33 subdir 8345 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  CC  /\  2  e.  CC  /\  (
( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )  -> 
( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
3432, 7, 10, 33mp3an12i 1341 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
35 2p2e4 9048 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  2 )  =  4
3632, 7, 7, 35subaddrii 8248 . . . . . . . . . . . . . . . . 17  |-  ( 4  -  2 )  =  2
3736oveq1i 5887 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  2 )  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )
3834, 37eqtr3di 2225 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3931, 38eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
4039oveq2d 5893 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  +  ( ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4122, 40eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4241oveq1d 5892 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4321, 42eqtrd 2210 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
44 binom2sub 10636 . . . . . . . . . . . 12  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
454, 8, 44syl2anr 290 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4645oveq1d 5892 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )
47 binom2 10634 . . . . . . . . . . 11  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
484, 8, 47syl2anr 290 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4943, 46, 483eqtr4d 2220 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) )
50493adant3 1017 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 ) )
5150oveq2d 5893 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
52 simp3 999 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  k  e.  CC )
5343ad2ant2 1019 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m ^ 2 )  e.  CC )
5483ad2ant1 1018 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
n ^ 2 )  e.  CC )
5553, 54subcld 8270 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  -  ( n ^ 2 ) )  e.  CC )
5652, 55sqmuld 10668 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 ) ) )
57173adant3 1017 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m  x.  n )  e.  CC )
587, 57, 18sylancr 414 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
2  x.  ( m  x.  n ) )  e.  CC )
5952, 58sqmuld 10668 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) ) )
6056, 59oveq12d 5895 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
61 sqcl 10583 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
k ^ 2 )  e.  CC )
62613ad2ant3 1020 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
k ^ 2 )  e.  CC )
6355sqcld 10654 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  e.  CC )
6458sqcld 10654 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( 2  x.  (
m  x.  n ) ) ^ 2 )  e.  CC )
6562, 63, 64adddid 7984 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6660, 65eqtr4d 2213 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k ^ 2 )  x.  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6753, 54addcld 7979 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  +  ( n ^ 2 ) )  e.  CC )
6852, 67sqmuld 10668 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
6951, 66, 683eqtr4d 2220 . . . . . 6  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
701, 2, 3, 69syl3an 1280 . . . . 5  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
71 oveq1 5884 . . . . . . . 8  |-  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  ->  ( A ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 ) )
72 oveq1 5884 . . . . . . . 8  |-  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  ->  ( B ^ 2 )  =  ( ( k  x.  ( 2  x.  (
m  x.  n ) ) ) ^ 2 ) )
7371, 72oveqan12d 5896 . . . . . . 7  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
74733adant3 1017 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
75 oveq1 5884 . . . . . . 7  |-  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  ->  ( C ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ^ 2 ) )
76753ad2ant3 1020 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( C ^ 2 )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) )
7774, 76eqeq12d 2192 . . . . 5  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <-> 
( ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) ) ^
2 )  +  ( ( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) ) )
7870, 77syl5ibrcom 157 . . . 4  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
79783expa 1203 . . 3  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
8079rexlimdva 2594 . 2  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
8180rexlimivv 2600 1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456  (class class class)co 5877   CCcc 7811    + caddc 7816    x. cmul 7818    - cmin 8130   NNcn 8921   2c2 8972   4c4 8974   ^cexp 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  pythagtriplem2  12268
  Copyright terms: Public domain W3C validator