ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim Unicode version

Theorem geo2lim 11538
Description: The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
Assertion
Ref Expression
geo2lim  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Distinct variable group:    A, k
Allowed substitution hint:    F( k)

Proof of Theorem geo2lim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9577 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9294 . . 3  |-  ( A  e.  CC  ->  1  e.  ZZ )
3 halfcn 9147 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
43a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  CC )
5 halfre 9146 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
6 halfge0 9149 . . . . . . . . 9  |-  0  <_  ( 1  /  2
)
7 absid 11094 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
85, 6, 7mp2an 426 . . . . . . . 8  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
9 halflt1 9150 . . . . . . . 8  |-  ( 1  /  2 )  <  1
108, 9eqbrtri 4036 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  <  1
1110a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( 1  / 
2 ) )  <  1 )
124, 11expcnv 11526 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  ~~>  0 )
13 id 19 . . . . 5  |-  ( A  e.  CC  ->  A  e.  CC )
14 geo2lim.1 . . . . . . 7  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
15 nnex 8939 . . . . . . . 8  |-  NN  e.  _V
1615mptex 5755 . . . . . . 7  |-  ( k  e.  NN  |->  ( A  /  ( 2 ^ k ) ) )  e.  _V
1714, 16eqeltri 2260 . . . . . 6  |-  F  e. 
_V
1817a1i 9 . . . . 5  |-  ( A  e.  CC  ->  F  e.  _V )
19 nnnn0 9197 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  NN0 )
2019adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN0 )
213a1i 9 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 1  /  2
)  e.  CC )
2221, 20expcld 10668 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  e.  CC )
23 oveq2 5896 . . . . . . . 8  |-  ( k  =  j  ->  (
( 1  /  2
) ^ k )  =  ( ( 1  /  2 ) ^
j ) )
24 eqid 2187 . . . . . . . 8  |-  ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  =  ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) )
2523, 24fvmptg 5605 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( ( 1  / 
2 ) ^ j
)  e.  CC )  ->  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
2620, 22, 25syl2anc 411 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( ( 1  /  2
) ^ j ) )
2726, 22eqeltrd 2264 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  e.  CC )
28 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  A  e.  CC )
29 2nn 9094 . . . . . . . . 9  |-  2  e.  NN
30 nnexpcl 10547 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
3129, 20, 30sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  NN )
3231nncnd 8947 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  CC )
3331nnap0d 8979 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
) #  0 )
3428, 32, 33divrecapd 8764 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  =  ( A  x.  ( 1  / 
( 2 ^ j
) ) ) )
35 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN )
3628, 32, 33divclapd 8761 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  e.  CC )
37 oveq2 5896 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
3837oveq2d 5904 . . . . . . . 8  |-  ( k  =  j  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ j ) ) )
3938, 14fvmptg 5605 . . . . . . 7  |-  ( ( j  e.  NN  /\  ( A  /  (
2 ^ j ) )  e.  CC )  ->  ( F `  j )  =  ( A  /  ( 2 ^ j ) ) )
4035, 36, 39syl2anc 411 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  /  ( 2 ^ j ) ) )
41 2cn 9004 . . . . . . . . 9  |-  2  e.  CC
42 2ap0 9026 . . . . . . . . 9  |-  2 #  0
43 nnz 9286 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
4443adantl 277 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ZZ )
45 exprecap 10575 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  2 #  0  /\  j  e.  ZZ )  ->  (
( 1  /  2
) ^ j )  =  ( 1  / 
( 2 ^ j
) ) )
4641, 42, 44, 45mp3an12i 1351 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  =  ( 1  /  ( 2 ^ j ) ) )
4726, 46eqtrd 2220 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( 1  /  ( 2 ^ j ) ) )
4847oveq2d 5904 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  x.  (
( k  e.  NN0  |->  ( ( 1  / 
2 ) ^ k
) ) `  j
) )  =  ( A  x.  ( 1  /  ( 2 ^ j ) ) ) )
4934, 40, 483eqtr4d 2230 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  x.  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j ) ) )
501, 2, 12, 13, 18, 27, 49climmulc2 11353 . . . 4  |-  ( A  e.  CC  ->  F  ~~>  ( A  x.  0
) )
51 mul01 8360 . . . 4  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
5250, 51breqtrd 4041 . . 3  |-  ( A  e.  CC  ->  F  ~~>  0 )
53 seqex 10461 . . . 4  |-  seq 1
(  +  ,  F
)  e.  _V
5453a1i 9 . . 3  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  e.  _V )
5540, 36eqeltrd 2264 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  e.  CC )
5640oveq2d 5904 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  -  ( F `  j )
)  =  ( A  -  ( A  / 
( 2 ^ j
) ) ) )
57 geo2sum 11536 . . . . 5  |-  ( ( j  e.  NN  /\  A  e.  CC )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
5857ancoms 268 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
59 elnnuz 9578 . . . . . . . 8  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
6059biimpri 133 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
6160adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  NN )
62 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  A  e.  CC )
6341a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  2  e.  CC )
6461nnnn0d 9243 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  NN0 )
6563, 64expcld 10668 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( 2 ^ n )  e.  CC )
6642a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  2 #  0 )
6761nnzd 9388 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  ZZ )
6863, 66, 67expap0d 10674 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( 2 ^ n ) #  0 )
6962, 65, 68divclapd 8761 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( A  / 
( 2 ^ n
) )  e.  CC )
70 oveq2 5896 . . . . . . . 8  |-  ( k  =  n  ->  (
2 ^ k )  =  ( 2 ^ n ) )
7170oveq2d 5904 . . . . . . 7  |-  ( k  =  n  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ n ) ) )
7271, 14fvmptg 5605 . . . . . 6  |-  ( ( n  e.  NN  /\  ( A  /  (
2 ^ n ) )  e.  CC )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
7361, 69, 72syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
7435, 1eleqtrdi 2280 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
7573, 74, 69fsum3ser 11419 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  (  seq 1
(  +  ,  F
) `  j )
)
7656, 58, 753eqtr2rd 2227 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  F ) `
 j )  =  ( A  -  ( F `  j )
) )
771, 2, 52, 13, 54, 55, 76climsubc2 11355 . 2  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  ( A  -  0 ) )
78 subid1 8191 . 2  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
7977, 78breqtrd 4041 1  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749   class class class wbr 4015    |-> cmpt 4076   ` cfv 5228  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826    + caddc 7828    x. cmul 7830    < clt 8006    <_ cle 8007    - cmin 8142   # cap 8552    / cdiv 8643   NNcn 8933   2c2 8984   NN0cn0 9190   ZZcz 9267   ZZ>=cuz 9542   ...cfz 10022    seqcseq 10459   ^cexp 10533   abscabs 11020    ~~> cli 11300   sum_csu 11375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by:  trilpolemeq1  15142
  Copyright terms: Public domain W3C validator