| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geo2lim | Unicode version | ||
| Description: The value of the infinite
geometric series
|
| Ref | Expression |
|---|---|
| geo2lim.1 |
|
| Ref | Expression |
|---|---|
| geo2lim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9746 |
. . 3
| |
| 2 | 1zzd 9461 |
. . 3
| |
| 3 | halfcn 9313 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | halfre 9312 |
. . . . . . . . 9
| |
| 6 | halfge0 9315 |
. . . . . . . . 9
| |
| 7 | absid 11568 |
. . . . . . . . 9
| |
| 8 | 5, 6, 7 | mp2an 426 |
. . . . . . . 8
|
| 9 | halflt1 9316 |
. . . . . . . 8
| |
| 10 | 8, 9 | eqbrtri 4103 |
. . . . . . 7
|
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | 4, 11 | expcnv 12001 |
. . . . 5
|
| 13 | id 19 |
. . . . 5
| |
| 14 | geo2lim.1 |
. . . . . . 7
| |
| 15 | nnex 9104 |
. . . . . . . 8
| |
| 16 | 15 | mptex 5858 |
. . . . . . 7
|
| 17 | 14, 16 | eqeltri 2302 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | nnnn0 9364 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 3 | a1i 9 |
. . . . . . . 8
|
| 22 | 21, 20 | expcld 10882 |
. . . . . . 7
|
| 23 | oveq2 6002 |
. . . . . . . 8
| |
| 24 | eqid 2229 |
. . . . . . . 8
| |
| 25 | 23, 24 | fvmptg 5703 |
. . . . . . 7
|
| 26 | 20, 22, 25 | syl2anc 411 |
. . . . . 6
|
| 27 | 26, 22 | eqeltrd 2306 |
. . . . 5
|
| 28 | simpl 109 |
. . . . . . 7
| |
| 29 | 2nn 9260 |
. . . . . . . . 9
| |
| 30 | nnexpcl 10761 |
. . . . . . . . 9
| |
| 31 | 29, 20, 30 | sylancr 414 |
. . . . . . . 8
|
| 32 | 31 | nncnd 9112 |
. . . . . . 7
|
| 33 | 31 | nnap0d 9144 |
. . . . . . 7
|
| 34 | 28, 32, 33 | divrecapd 8928 |
. . . . . 6
|
| 35 | simpr 110 |
. . . . . . 7
| |
| 36 | 28, 32, 33 | divclapd 8925 |
. . . . . . 7
|
| 37 | oveq2 6002 |
. . . . . . . . 9
| |
| 38 | 37 | oveq2d 6010 |
. . . . . . . 8
|
| 39 | 38, 14 | fvmptg 5703 |
. . . . . . 7
|
| 40 | 35, 36, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 2cn 9169 |
. . . . . . . . 9
| |
| 42 | 2ap0 9191 |
. . . . . . . . 9
| |
| 43 | nnz 9453 |
. . . . . . . . . 10
| |
| 44 | 43 | adantl 277 |
. . . . . . . . 9
|
| 45 | exprecap 10789 |
. . . . . . . . 9
| |
| 46 | 41, 42, 44, 45 | mp3an12i 1375 |
. . . . . . . 8
|
| 47 | 26, 46 | eqtrd 2262 |
. . . . . . 7
|
| 48 | 47 | oveq2d 6010 |
. . . . . 6
|
| 49 | 34, 40, 48 | 3eqtr4d 2272 |
. . . . 5
|
| 50 | 1, 2, 12, 13, 18, 27, 49 | climmulc2 11828 |
. . . 4
|
| 51 | mul01 8523 |
. . . 4
| |
| 52 | 50, 51 | breqtrd 4108 |
. . 3
|
| 53 | seqex 10658 |
. . . 4
| |
| 54 | 53 | a1i 9 |
. . 3
|
| 55 | 40, 36 | eqeltrd 2306 |
. . 3
|
| 56 | 40 | oveq2d 6010 |
. . . 4
|
| 57 | geo2sum 12011 |
. . . . 5
| |
| 58 | 57 | ancoms 268 |
. . . 4
|
| 59 | elnnuz 9747 |
. . . . . . . 8
| |
| 60 | 59 | biimpri 133 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | simpll 527 |
. . . . . . 7
| |
| 63 | 41 | a1i 9 |
. . . . . . . 8
|
| 64 | 61 | nnnn0d 9410 |
. . . . . . . 8
|
| 65 | 63, 64 | expcld 10882 |
. . . . . . 7
|
| 66 | 42 | a1i 9 |
. . . . . . . 8
|
| 67 | 61 | nnzd 9556 |
. . . . . . . 8
|
| 68 | 63, 66, 67 | expap0d 10888 |
. . . . . . 7
|
| 69 | 62, 65, 68 | divclapd 8925 |
. . . . . 6
|
| 70 | oveq2 6002 |
. . . . . . . 8
| |
| 71 | 70 | oveq2d 6010 |
. . . . . . 7
|
| 72 | 71, 14 | fvmptg 5703 |
. . . . . 6
|
| 73 | 61, 69, 72 | syl2anc 411 |
. . . . 5
|
| 74 | 35, 1 | eleqtrdi 2322 |
. . . . 5
|
| 75 | 73, 74, 69 | fsum3ser 11894 |
. . . 4
|
| 76 | 56, 58, 75 | 3eqtr2rd 2269 |
. . 3
|
| 77 | 1, 2, 52, 13, 54, 55, 76 | climsubc2 11830 |
. 2
|
| 78 | subid1 8354 |
. 2
| |
| 79 | 77, 78 | breqtrd 4108 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 |
| This theorem is referenced by: trilpolemeq1 16339 |
| Copyright terms: Public domain | W3C validator |