ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim Unicode version

Theorem geo2lim 11508
Description: The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
Assertion
Ref Expression
geo2lim  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Distinct variable group:    A, k
Allowed substitution hint:    F( k)

Proof of Theorem geo2lim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9552 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9269 . . 3  |-  ( A  e.  CC  ->  1  e.  ZZ )
3 halfcn 9122 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
43a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  CC )
5 halfre 9121 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
6 halfge0 9124 . . . . . . . . 9  |-  0  <_  ( 1  /  2
)
7 absid 11064 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
85, 6, 7mp2an 426 . . . . . . . 8  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
9 halflt1 9125 . . . . . . . 8  |-  ( 1  /  2 )  <  1
108, 9eqbrtri 4021 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  <  1
1110a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( 1  / 
2 ) )  <  1 )
124, 11expcnv 11496 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  ~~>  0 )
13 id 19 . . . . 5  |-  ( A  e.  CC  ->  A  e.  CC )
14 geo2lim.1 . . . . . . 7  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
15 nnex 8914 . . . . . . . 8  |-  NN  e.  _V
1615mptex 5738 . . . . . . 7  |-  ( k  e.  NN  |->  ( A  /  ( 2 ^ k ) ) )  e.  _V
1714, 16eqeltri 2250 . . . . . 6  |-  F  e. 
_V
1817a1i 9 . . . . 5  |-  ( A  e.  CC  ->  F  e.  _V )
19 nnnn0 9172 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  NN0 )
2019adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN0 )
213a1i 9 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 1  /  2
)  e.  CC )
2221, 20expcld 10639 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  e.  CC )
23 oveq2 5877 . . . . . . . 8  |-  ( k  =  j  ->  (
( 1  /  2
) ^ k )  =  ( ( 1  /  2 ) ^
j ) )
24 eqid 2177 . . . . . . . 8  |-  ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  =  ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) )
2523, 24fvmptg 5588 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( ( 1  / 
2 ) ^ j
)  e.  CC )  ->  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
2620, 22, 25syl2anc 411 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( ( 1  /  2
) ^ j ) )
2726, 22eqeltrd 2254 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  e.  CC )
28 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  A  e.  CC )
29 2nn 9069 . . . . . . . . 9  |-  2  e.  NN
30 nnexpcl 10519 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
3129, 20, 30sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  NN )
3231nncnd 8922 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  CC )
3331nnap0d 8954 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
) #  0 )
3428, 32, 33divrecapd 8739 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  =  ( A  x.  ( 1  / 
( 2 ^ j
) ) ) )
35 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN )
3628, 32, 33divclapd 8736 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  e.  CC )
37 oveq2 5877 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
3837oveq2d 5885 . . . . . . . 8  |-  ( k  =  j  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ j ) ) )
3938, 14fvmptg 5588 . . . . . . 7  |-  ( ( j  e.  NN  /\  ( A  /  (
2 ^ j ) )  e.  CC )  ->  ( F `  j )  =  ( A  /  ( 2 ^ j ) ) )
4035, 36, 39syl2anc 411 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  /  ( 2 ^ j ) ) )
41 2cn 8979 . . . . . . . . 9  |-  2  e.  CC
42 2ap0 9001 . . . . . . . . 9  |-  2 #  0
43 nnz 9261 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
4443adantl 277 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ZZ )
45 exprecap 10547 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  2 #  0  /\  j  e.  ZZ )  ->  (
( 1  /  2
) ^ j )  =  ( 1  / 
( 2 ^ j
) ) )
4641, 42, 44, 45mp3an12i 1341 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  =  ( 1  /  ( 2 ^ j ) ) )
4726, 46eqtrd 2210 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( 1  /  ( 2 ^ j ) ) )
4847oveq2d 5885 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  x.  (
( k  e.  NN0  |->  ( ( 1  / 
2 ) ^ k
) ) `  j
) )  =  ( A  x.  ( 1  /  ( 2 ^ j ) ) ) )
4934, 40, 483eqtr4d 2220 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  x.  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j ) ) )
501, 2, 12, 13, 18, 27, 49climmulc2 11323 . . . 4  |-  ( A  e.  CC  ->  F  ~~>  ( A  x.  0
) )
51 mul01 8336 . . . 4  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
5250, 51breqtrd 4026 . . 3  |-  ( A  e.  CC  ->  F  ~~>  0 )
53 seqex 10433 . . . 4  |-  seq 1
(  +  ,  F
)  e.  _V
5453a1i 9 . . 3  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  e.  _V )
5540, 36eqeltrd 2254 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  e.  CC )
5640oveq2d 5885 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  -  ( F `  j )
)  =  ( A  -  ( A  / 
( 2 ^ j
) ) ) )
57 geo2sum 11506 . . . . 5  |-  ( ( j  e.  NN  /\  A  e.  CC )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
5857ancoms 268 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
59 elnnuz 9553 . . . . . . . 8  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
6059biimpri 133 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
6160adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  NN )
62 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  A  e.  CC )
6341a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  2  e.  CC )
6461nnnn0d 9218 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  NN0 )
6563, 64expcld 10639 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( 2 ^ n )  e.  CC )
6642a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  2 #  0 )
6761nnzd 9363 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  ZZ )
6863, 66, 67expap0d 10645 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( 2 ^ n ) #  0 )
6962, 65, 68divclapd 8736 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( A  / 
( 2 ^ n
) )  e.  CC )
70 oveq2 5877 . . . . . . . 8  |-  ( k  =  n  ->  (
2 ^ k )  =  ( 2 ^ n ) )
7170oveq2d 5885 . . . . . . 7  |-  ( k  =  n  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ n ) ) )
7271, 14fvmptg 5588 . . . . . 6  |-  ( ( n  e.  NN  /\  ( A  /  (
2 ^ n ) )  e.  CC )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
7361, 69, 72syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
7435, 1eleqtrdi 2270 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
7573, 74, 69fsum3ser 11389 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  (  seq 1
(  +  ,  F
) `  j )
)
7656, 58, 753eqtr2rd 2217 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  F ) `
 j )  =  ( A  -  ( F `  j )
) )
771, 2, 52, 13, 54, 55, 76climsubc2 11325 . 2  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  ( A  -  0 ) )
78 subid1 8167 . 2  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
7977, 78breqtrd 4026 1  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2737   class class class wbr 4000    |-> cmpt 4061   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431   ^cexp 10505   abscabs 10990    ~~> cli 11270   sum_csu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  trilpolemeq1  14444
  Copyright terms: Public domain W3C validator