ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim Unicode version

Theorem geo2lim 11871
Description: The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
Assertion
Ref Expression
geo2lim  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Distinct variable group:    A, k
Allowed substitution hint:    F( k)

Proof of Theorem geo2lim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9691 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9406 . . 3  |-  ( A  e.  CC  ->  1  e.  ZZ )
3 halfcn 9258 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
43a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  CC )
5 halfre 9257 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
6 halfge0 9260 . . . . . . . . 9  |-  0  <_  ( 1  /  2
)
7 absid 11426 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
85, 6, 7mp2an 426 . . . . . . . 8  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
9 halflt1 9261 . . . . . . . 8  |-  ( 1  /  2 )  <  1
108, 9eqbrtri 4068 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  <  1
1110a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( 1  / 
2 ) )  <  1 )
124, 11expcnv 11859 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  ~~>  0 )
13 id 19 . . . . 5  |-  ( A  e.  CC  ->  A  e.  CC )
14 geo2lim.1 . . . . . . 7  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
15 nnex 9049 . . . . . . . 8  |-  NN  e.  _V
1615mptex 5817 . . . . . . 7  |-  ( k  e.  NN  |->  ( A  /  ( 2 ^ k ) ) )  e.  _V
1714, 16eqeltri 2279 . . . . . 6  |-  F  e. 
_V
1817a1i 9 . . . . 5  |-  ( A  e.  CC  ->  F  e.  _V )
19 nnnn0 9309 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  NN0 )
2019adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN0 )
213a1i 9 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 1  /  2
)  e.  CC )
2221, 20expcld 10825 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  e.  CC )
23 oveq2 5959 . . . . . . . 8  |-  ( k  =  j  ->  (
( 1  /  2
) ^ k )  =  ( ( 1  /  2 ) ^
j ) )
24 eqid 2206 . . . . . . . 8  |-  ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  =  ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) )
2523, 24fvmptg 5662 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( ( 1  / 
2 ) ^ j
)  e.  CC )  ->  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
2620, 22, 25syl2anc 411 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( ( 1  /  2
) ^ j ) )
2726, 22eqeltrd 2283 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  e.  CC )
28 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  A  e.  CC )
29 2nn 9205 . . . . . . . . 9  |-  2  e.  NN
30 nnexpcl 10704 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
3129, 20, 30sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  NN )
3231nncnd 9057 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  CC )
3331nnap0d 9089 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
) #  0 )
3428, 32, 33divrecapd 8873 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  =  ( A  x.  ( 1  / 
( 2 ^ j
) ) ) )
35 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN )
3628, 32, 33divclapd 8870 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  e.  CC )
37 oveq2 5959 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
3837oveq2d 5967 . . . . . . . 8  |-  ( k  =  j  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ j ) ) )
3938, 14fvmptg 5662 . . . . . . 7  |-  ( ( j  e.  NN  /\  ( A  /  (
2 ^ j ) )  e.  CC )  ->  ( F `  j )  =  ( A  /  ( 2 ^ j ) ) )
4035, 36, 39syl2anc 411 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  /  ( 2 ^ j ) ) )
41 2cn 9114 . . . . . . . . 9  |-  2  e.  CC
42 2ap0 9136 . . . . . . . . 9  |-  2 #  0
43 nnz 9398 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
4443adantl 277 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ZZ )
45 exprecap 10732 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  2 #  0  /\  j  e.  ZZ )  ->  (
( 1  /  2
) ^ j )  =  ( 1  / 
( 2 ^ j
) ) )
4641, 42, 44, 45mp3an12i 1354 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  =  ( 1  /  ( 2 ^ j ) ) )
4726, 46eqtrd 2239 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( 1  /  ( 2 ^ j ) ) )
4847oveq2d 5967 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  x.  (
( k  e.  NN0  |->  ( ( 1  / 
2 ) ^ k
) ) `  j
) )  =  ( A  x.  ( 1  /  ( 2 ^ j ) ) ) )
4934, 40, 483eqtr4d 2249 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  x.  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j ) ) )
501, 2, 12, 13, 18, 27, 49climmulc2 11686 . . . 4  |-  ( A  e.  CC  ->  F  ~~>  ( A  x.  0
) )
51 mul01 8468 . . . 4  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
5250, 51breqtrd 4073 . . 3  |-  ( A  e.  CC  ->  F  ~~>  0 )
53 seqex 10601 . . . 4  |-  seq 1
(  +  ,  F
)  e.  _V
5453a1i 9 . . 3  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  e.  _V )
5540, 36eqeltrd 2283 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  e.  CC )
5640oveq2d 5967 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  -  ( F `  j )
)  =  ( A  -  ( A  / 
( 2 ^ j
) ) ) )
57 geo2sum 11869 . . . . 5  |-  ( ( j  e.  NN  /\  A  e.  CC )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
5857ancoms 268 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
59 elnnuz 9692 . . . . . . . 8  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
6059biimpri 133 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
6160adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  NN )
62 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  A  e.  CC )
6341a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  2  e.  CC )
6461nnnn0d 9355 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  NN0 )
6563, 64expcld 10825 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( 2 ^ n )  e.  CC )
6642a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  2 #  0 )
6761nnzd 9501 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  n  e.  ZZ )
6863, 66, 67expap0d 10831 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( 2 ^ n ) #  0 )
6962, 65, 68divclapd 8870 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( A  / 
( 2 ^ n
) )  e.  CC )
70 oveq2 5959 . . . . . . . 8  |-  ( k  =  n  ->  (
2 ^ k )  =  ( 2 ^ n ) )
7170oveq2d 5967 . . . . . . 7  |-  ( k  =  n  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ n ) ) )
7271, 14fvmptg 5662 . . . . . 6  |-  ( ( n  e.  NN  /\  ( A  /  (
2 ^ n ) )  e.  CC )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
7361, 69, 72syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  (
ZZ>= `  1 ) )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
7435, 1eleqtrdi 2299 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
7573, 74, 69fsum3ser 11752 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  (  seq 1
(  +  ,  F
) `  j )
)
7656, 58, 753eqtr2rd 2246 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  F ) `
 j )  =  ( A  -  ( F `  j )
) )
771, 2, 52, 13, 54, 55, 76climsubc2 11688 . 2  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  ( A  -  0 ) )
78 subid1 8299 . 2  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
7977, 78breqtrd 4073 1  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773   class class class wbr 4047    |-> cmpt 4109   ` cfv 5276  (class class class)co 5951   CCcc 7930   RRcr 7931   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    < clt 8114    <_ cle 8115    - cmin 8250   # cap 8661    / cdiv 8752   NNcn 9043   2c2 9094   NN0cn0 9302   ZZcz 9379   ZZ>=cuz 9655   ...cfz 10137    seqcseq 10599   ^cexp 10690   abscabs 11352    ~~> cli 11633   sum_csu 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709
This theorem is referenced by:  trilpolemeq1  16053
  Copyright terms: Public domain W3C validator