| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geo2lim | Unicode version | ||
| Description: The value of the infinite
geometric series
|
| Ref | Expression |
|---|---|
| geo2lim.1 |
|
| Ref | Expression |
|---|---|
| geo2lim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9691 |
. . 3
| |
| 2 | 1zzd 9406 |
. . 3
| |
| 3 | halfcn 9258 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | halfre 9257 |
. . . . . . . . 9
| |
| 6 | halfge0 9260 |
. . . . . . . . 9
| |
| 7 | absid 11426 |
. . . . . . . . 9
| |
| 8 | 5, 6, 7 | mp2an 426 |
. . . . . . . 8
|
| 9 | halflt1 9261 |
. . . . . . . 8
| |
| 10 | 8, 9 | eqbrtri 4068 |
. . . . . . 7
|
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | 4, 11 | expcnv 11859 |
. . . . 5
|
| 13 | id 19 |
. . . . 5
| |
| 14 | geo2lim.1 |
. . . . . . 7
| |
| 15 | nnex 9049 |
. . . . . . . 8
| |
| 16 | 15 | mptex 5817 |
. . . . . . 7
|
| 17 | 14, 16 | eqeltri 2279 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | nnnn0 9309 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 3 | a1i 9 |
. . . . . . . 8
|
| 22 | 21, 20 | expcld 10825 |
. . . . . . 7
|
| 23 | oveq2 5959 |
. . . . . . . 8
| |
| 24 | eqid 2206 |
. . . . . . . 8
| |
| 25 | 23, 24 | fvmptg 5662 |
. . . . . . 7
|
| 26 | 20, 22, 25 | syl2anc 411 |
. . . . . 6
|
| 27 | 26, 22 | eqeltrd 2283 |
. . . . 5
|
| 28 | simpl 109 |
. . . . . . 7
| |
| 29 | 2nn 9205 |
. . . . . . . . 9
| |
| 30 | nnexpcl 10704 |
. . . . . . . . 9
| |
| 31 | 29, 20, 30 | sylancr 414 |
. . . . . . . 8
|
| 32 | 31 | nncnd 9057 |
. . . . . . 7
|
| 33 | 31 | nnap0d 9089 |
. . . . . . 7
|
| 34 | 28, 32, 33 | divrecapd 8873 |
. . . . . 6
|
| 35 | simpr 110 |
. . . . . . 7
| |
| 36 | 28, 32, 33 | divclapd 8870 |
. . . . . . 7
|
| 37 | oveq2 5959 |
. . . . . . . . 9
| |
| 38 | 37 | oveq2d 5967 |
. . . . . . . 8
|
| 39 | 38, 14 | fvmptg 5662 |
. . . . . . 7
|
| 40 | 35, 36, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 2cn 9114 |
. . . . . . . . 9
| |
| 42 | 2ap0 9136 |
. . . . . . . . 9
| |
| 43 | nnz 9398 |
. . . . . . . . . 10
| |
| 44 | 43 | adantl 277 |
. . . . . . . . 9
|
| 45 | exprecap 10732 |
. . . . . . . . 9
| |
| 46 | 41, 42, 44, 45 | mp3an12i 1354 |
. . . . . . . 8
|
| 47 | 26, 46 | eqtrd 2239 |
. . . . . . 7
|
| 48 | 47 | oveq2d 5967 |
. . . . . 6
|
| 49 | 34, 40, 48 | 3eqtr4d 2249 |
. . . . 5
|
| 50 | 1, 2, 12, 13, 18, 27, 49 | climmulc2 11686 |
. . . 4
|
| 51 | mul01 8468 |
. . . 4
| |
| 52 | 50, 51 | breqtrd 4073 |
. . 3
|
| 53 | seqex 10601 |
. . . 4
| |
| 54 | 53 | a1i 9 |
. . 3
|
| 55 | 40, 36 | eqeltrd 2283 |
. . 3
|
| 56 | 40 | oveq2d 5967 |
. . . 4
|
| 57 | geo2sum 11869 |
. . . . 5
| |
| 58 | 57 | ancoms 268 |
. . . 4
|
| 59 | elnnuz 9692 |
. . . . . . . 8
| |
| 60 | 59 | biimpri 133 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | simpll 527 |
. . . . . . 7
| |
| 63 | 41 | a1i 9 |
. . . . . . . 8
|
| 64 | 61 | nnnn0d 9355 |
. . . . . . . 8
|
| 65 | 63, 64 | expcld 10825 |
. . . . . . 7
|
| 66 | 42 | a1i 9 |
. . . . . . . 8
|
| 67 | 61 | nnzd 9501 |
. . . . . . . 8
|
| 68 | 63, 66, 67 | expap0d 10831 |
. . . . . . 7
|
| 69 | 62, 65, 68 | divclapd 8870 |
. . . . . 6
|
| 70 | oveq2 5959 |
. . . . . . . 8
| |
| 71 | 70 | oveq2d 5967 |
. . . . . . 7
|
| 72 | 71, 14 | fvmptg 5662 |
. . . . . 6
|
| 73 | 61, 69, 72 | syl2anc 411 |
. . . . 5
|
| 74 | 35, 1 | eleqtrdi 2299 |
. . . . 5
|
| 75 | 73, 74, 69 | fsum3ser 11752 |
. . . 4
|
| 76 | 56, 58, 75 | 3eqtr2rd 2246 |
. . 3
|
| 77 | 1, 2, 52, 13, 54, 55, 76 | climsubc2 11688 |
. 2
|
| 78 | subid1 8299 |
. 2
| |
| 79 | 77, 78 | breqtrd 4073 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 |
| This theorem is referenced by: trilpolemeq1 16053 |
| Copyright terms: Public domain | W3C validator |