| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1p1sr | Unicode version | ||
| Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
| Ref | Expression |
|---|---|
| m1p1sr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-m1r 7802 |
. . 3
| |
| 2 | df-1r 7801 |
. . 3
| |
| 3 | 1, 2 | oveq12i 5935 |
. 2
|
| 4 | df-0r 7800 |
. . 3
| |
| 5 | 1pr 7623 |
. . . . 5
| |
| 6 | addclpr 7606 |
. . . . . 6
| |
| 7 | 5, 5, 6 | mp2an 426 |
. . . . 5
|
| 8 | addsrpr 7814 |
. . . . 5
| |
| 9 | 5, 7, 7, 5, 8 | mp4an 427 |
. . . 4
|
| 10 | addassprg 7648 |
. . . . . . 7
| |
| 11 | 5, 5, 5, 10 | mp3an 1348 |
. . . . . 6
|
| 12 | 11 | oveq2i 5934 |
. . . . 5
|
| 13 | addclpr 7606 |
. . . . . . 7
| |
| 14 | 5, 7, 13 | mp2an 426 |
. . . . . 6
|
| 15 | addclpr 7606 |
. . . . . . 7
| |
| 16 | 7, 5, 15 | mp2an 426 |
. . . . . 6
|
| 17 | enreceq 7805 |
. . . . . 6
| |
| 18 | 5, 5, 14, 16, 17 | mp4an 427 |
. . . . 5
|
| 19 | 12, 18 | mpbir 146 |
. . . 4
|
| 20 | 9, 19 | eqtr4i 2220 |
. . 3
|
| 21 | 4, 20 | eqtr4i 2220 |
. 2
|
| 22 | 3, 21 | eqtr4i 2220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-1o 6475 df-2o 6476 df-oadd 6479 df-omul 6480 df-er 6593 df-ec 6595 df-qs 6599 df-ni 7373 df-pli 7374 df-mi 7375 df-lti 7376 df-plpq 7413 df-mpq 7414 df-enq 7416 df-nqqs 7417 df-plqqs 7418 df-mqqs 7419 df-1nqqs 7420 df-rq 7421 df-ltnqqs 7422 df-enq0 7493 df-nq0 7494 df-0nq0 7495 df-plq0 7496 df-mq0 7497 df-inp 7535 df-i1p 7536 df-iplp 7537 df-enr 7795 df-nr 7796 df-plr 7797 df-0r 7800 df-1r 7801 df-m1r 7802 |
| This theorem is referenced by: pn0sr 7840 ltm1sr 7846 caucvgsrlemoffres 7869 caucvgsr 7871 suplocsrlempr 7876 axi2m1 7944 |
| Copyright terms: Public domain | W3C validator |