ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1p1sr Unicode version

Theorem m1p1sr 7369
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
Assertion
Ref Expression
m1p1sr  |-  ( -1R 
+R  1R )  =  0R

Proof of Theorem m1p1sr
StepHypRef Expression
1 df-m1r 7342 . . 3  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
2 df-1r 7341 . . 3  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
31, 2oveq12i 5680 . 2  |-  ( -1R 
+R  1R )  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
4 df-0r 7340 . . 3  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
5 1pr 7176 . . . . 5  |-  1P  e.  P.
6 addclpr 7159 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
75, 5, 6mp2an 418 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
8 addsrpr 7354 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R  )
95, 7, 7, 5, 8mp4an 419 . . . 4  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P 
+P.  1P )  +P.  1P ) >. ]  ~R
10 addassprg 7201 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  +P.  1P )  =  ( 1P  +P.  ( 1P  +P.  1P ) ) )
115, 5, 5, 10mp3an 1274 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  1P )  =  ( 1P  +P.  ( 1P  +P.  1P ) )
1211oveq2i 5679 . . . . 5  |-  ( 1P 
+P.  ( ( 1P 
+P.  1P )  +P.  1P ) )  =  ( 1P  +P.  ( 1P 
+P.  ( 1P  +P.  1P ) ) )
13 addclpr 7159 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  +P.  ( 1P  +P.  1P ) )  e.  P. )
145, 7, 13mp2an 418 . . . . . 6  |-  ( 1P 
+P.  ( 1P  +P.  1P ) )  e.  P.
15 addclpr 7159 . . . . . . 7  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  +P.  1P )  e. 
P. )
167, 5, 15mp2an 418 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  1P )  e. 
P.
17 enreceq 7345 . . . . . 6  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( ( 1P  +P.  ( 1P  +P.  1P ) )  e.  P.  /\  ( ( 1P  +P.  1P )  +P.  1P )  e.  P. ) )  ->  ( [ <. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R  <->  ( 1P  +P.  ( ( 1P  +P.  1P )  +P.  1P ) )  =  ( 1P 
+P.  ( 1P  +P.  ( 1P  +P.  1P ) ) ) ) )
185, 5, 14, 16, 17mp4an 419 . . . . 5  |-  ( [
<. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P 
+P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P )
>. ]  ~R  <->  ( 1P  +P.  ( ( 1P  +P.  1P )  +P.  1P ) )  =  ( 1P 
+P.  ( 1P  +P.  ( 1P  +P.  1P ) ) ) )
1912, 18mpbir 145 . . . 4  |-  [ <. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R
209, 19eqtr4i 2112 . . 3  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. 1P ,  1P >. ]  ~R
214, 20eqtr4i 2112 . 2  |-  0R  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
223, 21eqtr4i 2112 1  |-  ( -1R 
+R  1R )  =  0R
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1290    e. wcel 1439   <.cop 3455  (class class class)co 5668   [cec 6306   P.cnp 6913   1Pc1p 6914    +P. cpp 6915    ~R cer 6918   0Rc0r 6920   1Rc1r 6921   -1Rcm1r 6922    +R cplr 6923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-eprel 4127  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-1o 6197  df-2o 6198  df-oadd 6201  df-omul 6202  df-er 6308  df-ec 6310  df-qs 6314  df-ni 6926  df-pli 6927  df-mi 6928  df-lti 6929  df-plpq 6966  df-mpq 6967  df-enq 6969  df-nqqs 6970  df-plqqs 6971  df-mqqs 6972  df-1nqqs 6973  df-rq 6974  df-ltnqqs 6975  df-enq0 7046  df-nq0 7047  df-0nq0 7048  df-plq0 7049  df-mq0 7050  df-inp 7088  df-i1p 7089  df-iplp 7090  df-enr 7335  df-nr 7336  df-plr 7337  df-0r 7340  df-1r 7341  df-m1r 7342
This theorem is referenced by:  pn0sr  7380  caucvgsrlemoffres  7408  caucvgsr  7410  axi2m1  7473
  Copyright terms: Public domain W3C validator