ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos0pilt1 Unicode version

Theorem cos0pilt1 14513
Description: Cosine is between minus one and one on the open interval between zero and  pi. (Contributed by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
cos0pilt1  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1 ) )

Proof of Theorem cos0pilt1
StepHypRef Expression
1 elioore 9925 . . 3  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  RR )
21recoscld 11745 . 2  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  e.  RR )
3 cospi 14461 . . 3  |-  ( cos `  pi )  =  -u
1
4 ioossicc 9972 . . . . 5  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
54sseli 3163 . . . 4  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  ( 0 [,] pi ) )
6 0xr 8017 . . . . . 6  |-  0  e.  RR*
7 pire 14447 . . . . . . 7  |-  pi  e.  RR
87rexri 8028 . . . . . 6  |-  pi  e.  RR*
9 0re 7970 . . . . . . 7  |-  0  e.  RR
10 pipos 14449 . . . . . . 7  |-  0  <  pi
119, 7, 10ltleii 8073 . . . . . 6  |-  0  <_  pi
12 ubicc2 9998 . . . . . 6  |-  ( ( 0  e.  RR*  /\  pi  e.  RR*  /\  0  <_  pi )  ->  pi  e.  ( 0 [,] pi ) )
136, 8, 11, 12mp3an 1347 . . . . 5  |-  pi  e.  ( 0 [,] pi )
1413a1i 9 . . . 4  |-  ( A  e.  ( 0 (,) pi )  ->  pi  e.  ( 0 [,] pi ) )
15 eliooord 9941 . . . . 5  |-  ( A  e.  ( 0 (,) pi )  ->  (
0  <  A  /\  A  <  pi ) )
1615simprd 114 . . . 4  |-  ( A  e.  ( 0 (,) pi )  ->  A  <  pi )
175, 14, 16cosordlem 14510 . . 3  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  pi )  < 
( cos `  A
) )
183, 17eqbrtrrid 4051 . 2  |-  ( A  e.  ( 0 (,) pi )  ->  -u 1  <  ( cos `  A
) )
19 2re 9002 . . . . . . 7  |-  2  e.  RR
2019, 7remulcli 7984 . . . . . 6  |-  ( 2  x.  pi )  e.  RR
2120rexri 8028 . . . . 5  |-  ( 2  x.  pi )  e. 
RR*
22 1le2 9140 . . . . . 6  |-  1  <_  2
23 lemulge12 8837 . . . . . 6  |-  ( ( ( pi  e.  RR  /\  2  e.  RR )  /\  ( 0  <_  pi  /\  1  <_  2
) )  ->  pi  <_  ( 2  x.  pi ) )
247, 19, 11, 22, 23mp4an 427 . . . . 5  |-  pi  <_  ( 2  x.  pi )
25 iooss2 9930 . . . . 5  |-  ( ( ( 2  x.  pi )  e.  RR*  /\  pi  <_  ( 2  x.  pi ) )  ->  (
0 (,) pi ) 
C_  ( 0 (,) ( 2  x.  pi ) ) )
2621, 24, 25mp2an 426 . . . 4  |-  ( 0 (,) pi )  C_  ( 0 (,) (
2  x.  pi ) )
2726sseli 3163 . . 3  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  ( 0 (,) (
2  x.  pi ) ) )
28 cos02pilt1 14512 . . 3  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
2927, 28syl 14 . 2  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  <  1 )
30 neg1rr 9038 . . . 4  |-  -u 1  e.  RR
3130rexri 8028 . . 3  |-  -u 1  e.  RR*
32 1re 7969 . . . 4  |-  1  e.  RR
3332rexri 8028 . . 3  |-  1  e.  RR*
34 elioo2 9934 . . 3  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( ( cos `  A
)  e.  ( -u
1 (,) 1 )  <-> 
( ( cos `  A
)  e.  RR  /\  -u 1  <  ( cos `  A )  /\  ( cos `  A )  <  1 ) ) )
3531, 33, 34mp2an 426 . 2  |-  ( ( cos `  A )  e.  ( -u 1 (,) 1 )  <->  ( ( cos `  A )  e.  RR  /\  -u 1  <  ( cos `  A
)  /\  ( cos `  A )  <  1
) )
362, 18, 29, 35syl3anbrc 1182 1  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 979    e. wcel 2158    C_ wss 3141   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   RRcr 7823   0cc0 7824   1c1 7825    x. cmul 7829   RR*cxr 8004    < clt 8005    <_ cle 8006   -ucneg 8142   2c2 8983   (,)cioo 9901   [,]cicc 9904   cosccos 11666   picpi 11668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944  ax-pre-suploc 7945  ax-addf 7946  ax-mulf 7947
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6096  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-map 6663  df-pm 6664  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-9 8998  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-xneg 9785  df-xadd 9786  df-ioo 9905  df-ioc 9906  df-ico 9907  df-icc 9908  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-bc 10741  df-ihash 10769  df-shft 10837  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-sin 11671  df-cos 11672  df-pi 11674  df-rest 12707  df-topgen 12726  df-psmet 13673  df-xmet 13674  df-met 13675  df-bl 13676  df-mopn 13677  df-top 13738  df-topon 13751  df-bases 13783  df-ntr 13836  df-cn 13928  df-cnp 13929  df-tx 13993  df-cncf 14298  df-limced 14365  df-dvap 14366
This theorem is referenced by:  ioocosf1o  14515
  Copyright terms: Public domain W3C validator