ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos0pilt1 Unicode version

Theorem cos0pilt1 15196
Description: Cosine is between minus one and one on the open interval between zero and  pi. (Contributed by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
cos0pilt1  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1 ) )

Proof of Theorem cos0pilt1
StepHypRef Expression
1 elioore 10006 . . 3  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  RR )
21recoscld 11908 . 2  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  e.  RR )
3 cospi 15144 . . 3  |-  ( cos `  pi )  =  -u
1
4 ioossicc 10053 . . . . 5  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
54sseli 3180 . . . 4  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  ( 0 [,] pi ) )
6 0xr 8092 . . . . . 6  |-  0  e.  RR*
7 pire 15130 . . . . . . 7  |-  pi  e.  RR
87rexri 8103 . . . . . 6  |-  pi  e.  RR*
9 0re 8045 . . . . . . 7  |-  0  e.  RR
10 pipos 15132 . . . . . . 7  |-  0  <  pi
119, 7, 10ltleii 8148 . . . . . 6  |-  0  <_  pi
12 ubicc2 10079 . . . . . 6  |-  ( ( 0  e.  RR*  /\  pi  e.  RR*  /\  0  <_  pi )  ->  pi  e.  ( 0 [,] pi ) )
136, 8, 11, 12mp3an 1348 . . . . 5  |-  pi  e.  ( 0 [,] pi )
1413a1i 9 . . . 4  |-  ( A  e.  ( 0 (,) pi )  ->  pi  e.  ( 0 [,] pi ) )
15 eliooord 10022 . . . . 5  |-  ( A  e.  ( 0 (,) pi )  ->  (
0  <  A  /\  A  <  pi ) )
1615simprd 114 . . . 4  |-  ( A  e.  ( 0 (,) pi )  ->  A  <  pi )
175, 14, 16cosordlem 15193 . . 3  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  pi )  < 
( cos `  A
) )
183, 17eqbrtrrid 4070 . 2  |-  ( A  e.  ( 0 (,) pi )  ->  -u 1  <  ( cos `  A
) )
19 2re 9079 . . . . . . 7  |-  2  e.  RR
2019, 7remulcli 8059 . . . . . 6  |-  ( 2  x.  pi )  e.  RR
2120rexri 8103 . . . . 5  |-  ( 2  x.  pi )  e. 
RR*
22 1le2 9218 . . . . . 6  |-  1  <_  2
23 lemulge12 8913 . . . . . 6  |-  ( ( ( pi  e.  RR  /\  2  e.  RR )  /\  ( 0  <_  pi  /\  1  <_  2
) )  ->  pi  <_  ( 2  x.  pi ) )
247, 19, 11, 22, 23mp4an 427 . . . . 5  |-  pi  <_  ( 2  x.  pi )
25 iooss2 10011 . . . . 5  |-  ( ( ( 2  x.  pi )  e.  RR*  /\  pi  <_  ( 2  x.  pi ) )  ->  (
0 (,) pi ) 
C_  ( 0 (,) ( 2  x.  pi ) ) )
2621, 24, 25mp2an 426 . . . 4  |-  ( 0 (,) pi )  C_  ( 0 (,) (
2  x.  pi ) )
2726sseli 3180 . . 3  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  ( 0 (,) (
2  x.  pi ) ) )
28 cos02pilt1 15195 . . 3  |-  ( A  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
2927, 28syl 14 . 2  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  <  1 )
30 neg1rr 9115 . . . 4  |-  -u 1  e.  RR
3130rexri 8103 . . 3  |-  -u 1  e.  RR*
32 1re 8044 . . . 4  |-  1  e.  RR
3332rexri 8103 . . 3  |-  1  e.  RR*
34 elioo2 10015 . . 3  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( ( cos `  A
)  e.  ( -u
1 (,) 1 )  <-> 
( ( cos `  A
)  e.  RR  /\  -u 1  <  ( cos `  A )  /\  ( cos `  A )  <  1 ) ) )
3531, 33, 34mp2an 426 . 2  |-  ( ( cos `  A )  e.  ( -u 1 (,) 1 )  <->  ( ( cos `  A )  e.  RR  /\  -u 1  <  ( cos `  A
)  /\  ( cos `  A )  <  1
) )
362, 18, 29, 35syl3anbrc 1183 1  |-  ( A  e.  ( 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    e. wcel 2167    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    x. cmul 7903   RR*cxr 8079    < clt 8080    <_ cle 8081   -ucneg 8217   2c2 9060   (,)cioo 9982   [,]cicc 9985   cosccos 11829   picpi 11831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ioc 9987  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834  df-cos 11835  df-pi 11837  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by:  ioocosf1o  15198
  Copyright terms: Public domain W3C validator