ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2gt1lt2 Unicode version

Theorem sqrt2gt1lt2 11000
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
Assertion
Ref Expression
sqrt2gt1lt2  |-  ( 1  <  ( sqr `  2
)  /\  ( sqr `  2 )  <  2
)

Proof of Theorem sqrt2gt1lt2
StepHypRef Expression
1 sqrt1 10997 . . 3  |-  ( sqr `  1 )  =  1
2 1lt2 9034 . . . 4  |-  1  <  2
3 1re 7906 . . . . 5  |-  1  e.  RR
4 0le1 8387 . . . . 5  |-  0  <_  1
5 2re 8935 . . . . 5  |-  2  e.  RR
6 0le2 8955 . . . . 5  |-  0  <_  2
7 sqrtlt 10988 . . . . 5  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 2  e.  RR  /\  0  <_ 
2 ) )  -> 
( 1  <  2  <->  ( sqr `  1 )  <  ( sqr `  2
) ) )
83, 4, 5, 6, 7mp4an 425 . . . 4  |-  ( 1  <  2  <->  ( sqr `  1 )  <  ( sqr `  2 ) )
92, 8mpbi 144 . . 3  |-  ( sqr `  1 )  < 
( sqr `  2
)
101, 9eqbrtrri 4010 . 2  |-  1  <  ( sqr `  2
)
11 2lt4 9038 . . . 4  |-  2  <  4
12 4re 8942 . . . . 5  |-  4  e.  RR
13 0re 7907 . . . . . 6  |-  0  e.  RR
14 4pos 8962 . . . . . 6  |-  0  <  4
1513, 12, 14ltleii 8009 . . . . 5  |-  0  <_  4
16 sqrtlt 10988 . . . . 5  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( 4  e.  RR  /\  0  <_ 
4 ) )  -> 
( 2  <  4  <->  ( sqr `  2 )  <  ( sqr `  4
) ) )
175, 6, 12, 15, 16mp4an 425 . . . 4  |-  ( 2  <  4  <->  ( sqr `  2 )  <  ( sqr `  4 ) )
1811, 17mpbi 144 . . 3  |-  ( sqr `  2 )  < 
( sqr `  4
)
19 sqrt4 10998 . . 3  |-  ( sqr `  4 )  =  2
2018, 19breqtri 4012 . 2  |-  ( sqr `  2 )  <  2
2110, 20pm3.2i 270 1  |-  ( 1  <  ( sqr `  2
)  /\  ( sqr `  2 )  <  2
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   class class class wbr 3987   ` cfv 5196   RRcr 7760   0cc0 7761   1c1 7762    < clt 7941    <_ cle 7942   2c2 8916   4c4 8918   sqrcsqrt 10947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-rp 9598  df-seqfrec 10389  df-exp 10463  df-rsqrt 10949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator