ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2gt1lt2 Unicode version

Theorem sqrt2gt1lt2 11196
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
Assertion
Ref Expression
sqrt2gt1lt2  |-  ( 1  <  ( sqr `  2
)  /\  ( sqr `  2 )  <  2
)

Proof of Theorem sqrt2gt1lt2
StepHypRef Expression
1 sqrt1 11193 . . 3  |-  ( sqr `  1 )  =  1
2 1lt2 9154 . . . 4  |-  1  <  2
3 1re 8020 . . . . 5  |-  1  e.  RR
4 0le1 8502 . . . . 5  |-  0  <_  1
5 2re 9054 . . . . 5  |-  2  e.  RR
6 0le2 9074 . . . . 5  |-  0  <_  2
7 sqrtlt 11184 . . . . 5  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 2  e.  RR  /\  0  <_ 
2 ) )  -> 
( 1  <  2  <->  ( sqr `  1 )  <  ( sqr `  2
) ) )
83, 4, 5, 6, 7mp4an 427 . . . 4  |-  ( 1  <  2  <->  ( sqr `  1 )  <  ( sqr `  2 ) )
92, 8mpbi 145 . . 3  |-  ( sqr `  1 )  < 
( sqr `  2
)
101, 9eqbrtrri 4053 . 2  |-  1  <  ( sqr `  2
)
11 2lt4 9158 . . . 4  |-  2  <  4
12 4re 9061 . . . . 5  |-  4  e.  RR
13 0re 8021 . . . . . 6  |-  0  e.  RR
14 4pos 9081 . . . . . 6  |-  0  <  4
1513, 12, 14ltleii 8124 . . . . 5  |-  0  <_  4
16 sqrtlt 11184 . . . . 5  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( 4  e.  RR  /\  0  <_ 
4 ) )  -> 
( 2  <  4  <->  ( sqr `  2 )  <  ( sqr `  4
) ) )
175, 6, 12, 15, 16mp4an 427 . . . 4  |-  ( 2  <  4  <->  ( sqr `  2 )  <  ( sqr `  4 ) )
1811, 17mpbi 145 . . 3  |-  ( sqr `  2 )  < 
( sqr `  4
)
19 sqrt4 11194 . . 3  |-  ( sqr `  4 )  =  2
2018, 19breqtri 4055 . 2  |-  ( sqr `  2 )  <  2
2110, 20pm3.2i 272 1  |-  ( 1  <  ( sqr `  2
)  /\  ( sqr `  2 )  <  2
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   class class class wbr 4030   ` cfv 5255   RRcr 7873   0cc0 7874   1c1 7875    < clt 8056    <_ cle 8057   2c2 9035   4c4 9037   sqrcsqrt 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-rsqrt 11145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator