ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq Unicode version

Theorem 1lt2nq 7062
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq  |-  1Q  <Q  ( 1Q  +Q  1Q )

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 6996 . . . . 5  |-  1o  <N  ( 1o  +N  1o )
2 1pi 6971 . . . . . 6  |-  1o  e.  N.
3 mulidpi 6974 . . . . . 6  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
42, 3ax-mp 7 . . . . 5  |-  ( 1o 
.N  1o )  =  1o
54, 4oveq12i 5702 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( 1o  +N  1o )
61, 4, 53brtr4i 3895 . . . 4  |-  ( 1o 
.N  1o )  <N 
( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )
7 mulclpi 6984 . . . . . 6  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  .N  1o )  e.  N. )
82, 2, 7mp2an 418 . . . . 5  |-  ( 1o 
.N  1o )  e. 
N.
9 addclpi 6983 . . . . . 6  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  ( 1o  .N  1o )  e. 
N. )  ->  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N. )
108, 8, 9mp2an 418 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.
11 ltmpig 6995 . . . . 5  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  1o  e.  N. )  ->  ( ( 1o  .N  1o )  <N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
128, 10, 2, 11mp3an 1280 . . . 4  |-  ( ( 1o  .N  1o ) 
<N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <-> 
( 1o  .N  ( 1o  .N  1o ) ) 
<N  ( 1o  .N  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ) )
136, 12mpbi 144 . . 3  |-  ( 1o 
.N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) )
14 ordpipqqs 7030 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  ( 1o  .N  1o )  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
152, 2, 10, 8, 14mp4an 419 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) )
1613, 15mpbir 145 . 2  |-  [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
17 df-1nqqs 7007 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1817, 17oveq12i 5702 . . 3  |-  ( 1Q 
+Q  1Q )  =  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )
19 addpipqqs 7026 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
202, 2, 2, 2, 19mp4an 419 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2118, 20eqtri 2115 . 2  |-  ( 1Q 
+Q  1Q )  =  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2216, 17, 213brtr4i 3895 1  |-  1Q  <Q  ( 1Q  +Q  1Q )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1296    e. wcel 1445   <.cop 3469   class class class wbr 3867  (class class class)co 5690   1oc1o 6212   [cec 6330   N.cnpi 6928    +N cpli 6929    .N cmi 6930    <N clti 6931    ~Q ceq 6935   1Qc1q 6937    +Q cplq 6938    <Q cltq 6941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-1nqqs 7007  df-ltnqqs 7009
This theorem is referenced by:  ltaddnq  7063
  Copyright terms: Public domain W3C validator