Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1lt2nq | Unicode version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
1lt2nq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 7289 | . . . . 5 | |
2 | 1pi 7264 | . . . . . 6 | |
3 | mulidpi 7267 | . . . . . 6 | |
4 | 2, 3 | ax-mp 5 | . . . . 5 |
5 | 4, 4 | oveq12i 5862 | . . . . 5 |
6 | 1, 4, 5 | 3brtr4i 4017 | . . . 4 |
7 | mulclpi 7277 | . . . . . 6 | |
8 | 2, 2, 7 | mp2an 424 | . . . . 5 |
9 | addclpi 7276 | . . . . . 6 | |
10 | 8, 8, 9 | mp2an 424 | . . . . 5 |
11 | ltmpig 7288 | . . . . 5 | |
12 | 8, 10, 2, 11 | mp3an 1332 | . . . 4 |
13 | 6, 12 | mpbi 144 | . . 3 |
14 | ordpipqqs 7323 | . . . 4 | |
15 | 2, 2, 10, 8, 14 | mp4an 425 | . . 3 |
16 | 13, 15 | mpbir 145 | . 2 |
17 | df-1nqqs 7300 | . 2 | |
18 | 17, 17 | oveq12i 5862 | . . 3 |
19 | addpipqqs 7319 | . . . 4 | |
20 | 2, 2, 2, 2, 19 | mp4an 425 | . . 3 |
21 | 18, 20 | eqtri 2191 | . 2 |
22 | 16, 17, 21 | 3brtr4i 4017 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 cop 3584 class class class wbr 3987 (class class class)co 5850 c1o 6385 cec 6507 cnpi 7221 cpli 7222 cmi 7223 clti 7224 ceq 7228 c1q 7230 cplq 7231 cltq 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-1o 6392 df-oadd 6396 df-omul 6397 df-er 6509 df-ec 6511 df-qs 6515 df-ni 7253 df-pli 7254 df-mi 7255 df-lti 7256 df-plpq 7293 df-enq 7296 df-nqqs 7297 df-plqqs 7298 df-1nqqs 7300 df-ltnqqs 7302 |
This theorem is referenced by: ltaddnq 7356 |
Copyright terms: Public domain | W3C validator |