ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq Unicode version

Theorem 1lt2nq 7435
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq  |-  1Q  <Q  ( 1Q  +Q  1Q )

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7369 . . . . 5  |-  1o  <N  ( 1o  +N  1o )
2 1pi 7344 . . . . . 6  |-  1o  e.  N.
3 mulidpi 7347 . . . . . 6  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
42, 3ax-mp 5 . . . . 5  |-  ( 1o 
.N  1o )  =  1o
54, 4oveq12i 5908 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( 1o  +N  1o )
61, 4, 53brtr4i 4048 . . . 4  |-  ( 1o 
.N  1o )  <N 
( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )
7 mulclpi 7357 . . . . . 6  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  .N  1o )  e.  N. )
82, 2, 7mp2an 426 . . . . 5  |-  ( 1o 
.N  1o )  e. 
N.
9 addclpi 7356 . . . . . 6  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  ( 1o  .N  1o )  e. 
N. )  ->  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N. )
108, 8, 9mp2an 426 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.
11 ltmpig 7368 . . . . 5  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  1o  e.  N. )  ->  ( ( 1o  .N  1o )  <N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
128, 10, 2, 11mp3an 1348 . . . 4  |-  ( ( 1o  .N  1o ) 
<N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <-> 
( 1o  .N  ( 1o  .N  1o ) ) 
<N  ( 1o  .N  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ) )
136, 12mpbi 145 . . 3  |-  ( 1o 
.N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) )
14 ordpipqqs 7403 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  ( 1o  .N  1o )  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
152, 2, 10, 8, 14mp4an 427 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) )
1613, 15mpbir 146 . 2  |-  [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
17 df-1nqqs 7380 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1817, 17oveq12i 5908 . . 3  |-  ( 1Q 
+Q  1Q )  =  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )
19 addpipqqs 7399 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
202, 2, 2, 2, 19mp4an 427 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2118, 20eqtri 2210 . 2  |-  ( 1Q 
+Q  1Q )  =  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2216, 17, 213brtr4i 4048 1  |-  1Q  <Q  ( 1Q  +Q  1Q )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2160   <.cop 3610   class class class wbr 4018  (class class class)co 5896   1oc1o 6434   [cec 6557   N.cnpi 7301    +N cpli 7302    .N cmi 7303    <N clti 7304    ~Q ceq 7308   1Qc1q 7310    +Q cplq 7311    <Q cltq 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-1o 6441  df-oadd 6445  df-omul 6446  df-er 6559  df-ec 6561  df-qs 6565  df-ni 7333  df-pli 7334  df-mi 7335  df-lti 7336  df-plpq 7373  df-enq 7376  df-nqqs 7377  df-plqqs 7378  df-1nqqs 7380  df-ltnqqs 7382
This theorem is referenced by:  ltaddnq  7436
  Copyright terms: Public domain W3C validator