ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq Unicode version

Theorem 1lt2nq 7473
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq  |-  1Q  <Q  ( 1Q  +Q  1Q )

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7407 . . . . 5  |-  1o  <N  ( 1o  +N  1o )
2 1pi 7382 . . . . . 6  |-  1o  e.  N.
3 mulidpi 7385 . . . . . 6  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
42, 3ax-mp 5 . . . . 5  |-  ( 1o 
.N  1o )  =  1o
54, 4oveq12i 5934 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( 1o  +N  1o )
61, 4, 53brtr4i 4063 . . . 4  |-  ( 1o 
.N  1o )  <N 
( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )
7 mulclpi 7395 . . . . . 6  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  .N  1o )  e.  N. )
82, 2, 7mp2an 426 . . . . 5  |-  ( 1o 
.N  1o )  e. 
N.
9 addclpi 7394 . . . . . 6  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  ( 1o  .N  1o )  e. 
N. )  ->  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N. )
108, 8, 9mp2an 426 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.
11 ltmpig 7406 . . . . 5  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  1o  e.  N. )  ->  ( ( 1o  .N  1o )  <N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
128, 10, 2, 11mp3an 1348 . . . 4  |-  ( ( 1o  .N  1o ) 
<N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <-> 
( 1o  .N  ( 1o  .N  1o ) ) 
<N  ( 1o  .N  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ) )
136, 12mpbi 145 . . 3  |-  ( 1o 
.N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) )
14 ordpipqqs 7441 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  ( 1o  .N  1o )  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
152, 2, 10, 8, 14mp4an 427 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) )
1613, 15mpbir 146 . 2  |-  [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
17 df-1nqqs 7418 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1817, 17oveq12i 5934 . . 3  |-  ( 1Q 
+Q  1Q )  =  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )
19 addpipqqs 7437 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
202, 2, 2, 2, 19mp4an 427 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2118, 20eqtri 2217 . 2  |-  ( 1Q 
+Q  1Q )  =  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2216, 17, 213brtr4i 4063 1  |-  1Q  <Q  ( 1Q  +Q  1Q )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033  (class class class)co 5922   1oc1o 6467   [cec 6590   N.cnpi 7339    +N cpli 7340    .N cmi 7341    <N clti 7342    ~Q ceq 7346   1Qc1q 7348    +Q cplq 7349    <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-1nqqs 7418  df-ltnqqs 7420
This theorem is referenced by:  ltaddnq  7474
  Copyright terms: Public domain W3C validator