ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq Unicode version

Theorem 1lt2nq 7355
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq  |-  1Q  <Q  ( 1Q  +Q  1Q )

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7289 . . . . 5  |-  1o  <N  ( 1o  +N  1o )
2 1pi 7264 . . . . . 6  |-  1o  e.  N.
3 mulidpi 7267 . . . . . 6  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
42, 3ax-mp 5 . . . . 5  |-  ( 1o 
.N  1o )  =  1o
54, 4oveq12i 5862 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( 1o  +N  1o )
61, 4, 53brtr4i 4017 . . . 4  |-  ( 1o 
.N  1o )  <N 
( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )
7 mulclpi 7277 . . . . . 6  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  .N  1o )  e.  N. )
82, 2, 7mp2an 424 . . . . 5  |-  ( 1o 
.N  1o )  e. 
N.
9 addclpi 7276 . . . . . 6  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  ( 1o  .N  1o )  e. 
N. )  ->  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N. )
108, 8, 9mp2an 424 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.
11 ltmpig 7288 . . . . 5  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  1o  e.  N. )  ->  ( ( 1o  .N  1o )  <N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
128, 10, 2, 11mp3an 1332 . . . 4  |-  ( ( 1o  .N  1o ) 
<N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <-> 
( 1o  .N  ( 1o  .N  1o ) ) 
<N  ( 1o  .N  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ) )
136, 12mpbi 144 . . 3  |-  ( 1o 
.N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) )
14 ordpipqqs 7323 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  ( 1o  .N  1o )  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
152, 2, 10, 8, 14mp4an 425 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) )
1613, 15mpbir 145 . 2  |-  [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
17 df-1nqqs 7300 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1817, 17oveq12i 5862 . . 3  |-  ( 1Q 
+Q  1Q )  =  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )
19 addpipqqs 7319 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
202, 2, 2, 2, 19mp4an 425 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2118, 20eqtri 2191 . 2  |-  ( 1Q 
+Q  1Q )  =  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2216, 17, 213brtr4i 4017 1  |-  1Q  <Q  ( 1Q  +Q  1Q )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    e. wcel 2141   <.cop 3584   class class class wbr 3987  (class class class)co 5850   1oc1o 6385   [cec 6507   N.cnpi 7221    +N cpli 7222    .N cmi 7223    <N clti 7224    ~Q ceq 7228   1Qc1q 7230    +Q cplq 7231    <Q cltq 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-1nqqs 7300  df-ltnqqs 7302
This theorem is referenced by:  ltaddnq  7356
  Copyright terms: Public domain W3C validator