ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq Unicode version

Theorem 1lt2nq 7501
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq  |-  1Q  <Q  ( 1Q  +Q  1Q )

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7435 . . . . 5  |-  1o  <N  ( 1o  +N  1o )
2 1pi 7410 . . . . . 6  |-  1o  e.  N.
3 mulidpi 7413 . . . . . 6  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
42, 3ax-mp 5 . . . . 5  |-  ( 1o 
.N  1o )  =  1o
54, 4oveq12i 5946 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( 1o  +N  1o )
61, 4, 53brtr4i 4073 . . . 4  |-  ( 1o 
.N  1o )  <N 
( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )
7 mulclpi 7423 . . . . . 6  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  .N  1o )  e.  N. )
82, 2, 7mp2an 426 . . . . 5  |-  ( 1o 
.N  1o )  e. 
N.
9 addclpi 7422 . . . . . 6  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  ( 1o  .N  1o )  e. 
N. )  ->  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N. )
108, 8, 9mp2an 426 . . . . 5  |-  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.
11 ltmpig 7434 . . . . 5  |-  ( ( ( 1o  .N  1o )  e.  N.  /\  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  1o  e.  N. )  ->  ( ( 1o  .N  1o )  <N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
128, 10, 2, 11mp3an 1349 . . . 4  |-  ( ( 1o  .N  1o ) 
<N  ( ( 1o  .N  1o )  +N  ( 1o  .N  1o ) )  <-> 
( 1o  .N  ( 1o  .N  1o ) ) 
<N  ( 1o  .N  (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ) )
136, 12mpbi 145 . . 3  |-  ( 1o 
.N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) )
14 ordpipqqs 7469 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) )  e.  N.  /\  ( 1o  .N  1o )  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) ) )
152, 2, 10, 8, 14mp4an 427 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  <Q  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  <->  ( 1o  .N  ( 1o  .N  1o ) )  <N  ( 1o  .N  ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ) )
1613, 15mpbir 146 . 2  |-  [ <. 1o ,  1o >. ]  ~Q  <Q  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
17 df-1nqqs 7446 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1817, 17oveq12i 5946 . . 3  |-  ( 1Q 
+Q  1Q )  =  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )
19 addpipqqs 7465 . . . 4  |-  ( ( ( 1o  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
202, 2, 2, 2, 19mp4an 427 . . 3  |-  ( [
<. 1o ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( 1o  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2118, 20eqtri 2225 . 2  |-  ( 1Q 
+Q  1Q )  =  [ <. ( ( 1o 
.N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q
2216, 17, 213brtr4i 4073 1  |-  1Q  <Q  ( 1Q  +Q  1Q )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372    e. wcel 2175   <.cop 3635   class class class wbr 4043  (class class class)co 5934   1oc1o 6485   [cec 6608   N.cnpi 7367    +N cpli 7368    .N cmi 7369    <N clti 7370    ~Q ceq 7374   1Qc1q 7376    +Q cplq 7377    <Q cltq 7380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-1nqqs 7446  df-ltnqqs 7448
This theorem is referenced by:  ltaddnq  7502
  Copyright terms: Public domain W3C validator