ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1m1sr Unicode version

Theorem m1m1sr 7909
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
m1m1sr  |-  ( -1R 
.R  -1R )  =  1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 7881 . . 3  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
21, 1oveq12i 5979 . 2  |-  ( -1R 
.R  -1R )  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  .R  [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  )
3 df-1r 7880 . . 3  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
4 1pr 7702 . . . . 5  |-  1P  e.  P.
5 addclpr 7685 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
64, 4, 5mp2an 426 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
7 mulsrpr 7894 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  )
84, 6, 4, 6, 7mp4an 427 . . . 4  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R
9 mulclpr 7720 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( 1P  +P.  1P ) )  e.  P. )
104, 6, 9mp2an 426 . . . . . . . 8  |-  ( 1P 
.P.  ( 1P  +P.  1P ) )  e.  P.
11 mulclpr 7720 . . . . . . . . 9  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  .P.  1P )  e. 
P. )
126, 4, 11mp2an 426 . . . . . . . 8  |-  ( ( 1P  +P.  1P )  .P.  1P )  e. 
P.
13 addclpr 7685 . . . . . . . 8  |-  ( ( ( 1P  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
( 1P  +P.  1P )  .P.  1P )  e. 
P. )  ->  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )  e.  P. )
1410, 12, 13mp2an 426 . . . . . . 7  |-  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )  e.  P.
15 addassprg 7727 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )  e.  P. )  ->  ( ( 1P 
+P.  1P )  +P.  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) ) )  =  ( 1P  +P.  ( 1P  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) ) ) )
164, 4, 14, 15mp3an 1350 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( 1P  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) ) )
17 1idpr 7740 . . . . . . . . 9  |-  ( 1P  e.  P.  ->  ( 1P  .P.  1P )  =  1P )
184, 17ax-mp 5 . . . . . . . 8  |-  ( 1P 
.P.  1P )  =  1P
19 distrprg 7736 . . . . . . . . . 10  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) ) )
206, 4, 4, 19mp3an 1350 . . . . . . . . 9  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )
21 mulcomprg 7728 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( 1P  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  .P.  1P ) )
224, 6, 21mp2an 426 . . . . . . . . . 10  |-  ( 1P 
.P.  ( 1P  +P.  1P ) )  =  ( ( 1P  +P.  1P )  .P.  1P )
2322oveq1i 5977 . . . . . . . . 9  |-  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
2420, 23eqtr4i 2231 . . . . . . . 8  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )
2518, 24oveq12i 5979 . . . . . . 7  |-  ( ( 1P  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  ( 1P  +P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )
2625oveq2i 5978 . . . . . 6  |-  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) )  =  ( 1P  +P.  ( 1P  +P.  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) ) )
2716, 26eqtr4i 2231 . . . . 5  |-  ( ( 1P  +P.  1P )  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) )
28 mulclpr 7720 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  .P.  1P )  e.  P. )
294, 4, 28mp2an 426 . . . . . . 7  |-  ( 1P 
.P.  1P )  e.  P.
30 mulclpr 7720 . . . . . . . 8  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( 1P  +P.  1P )  e. 
P. )  ->  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P. )
316, 6, 30mp2an 426 . . . . . . 7  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P.
32 addclpr 7685 . . . . . . 7  |-  ( ( ( 1P  .P.  1P )  e.  P.  /\  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P. )  ->  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
3329, 31, 32mp2an 426 . . . . . 6  |-  ( ( 1P  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e.  P.
34 enreceq 7884 . . . . . 6  |-  ( ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e. 
P.  /\  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) )  e.  P. ) )  ->  ( [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  <->  ( ( 1P  +P.  1P )  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ) ) )
356, 4, 33, 14, 34mp4an 427 . . . . 5  |-  ( [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  <->  ( ( 1P  +P.  1P )  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ) )
3627, 35mpbir 146 . . . 4  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R
378, 36eqtr4i 2231 . . 3  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
383, 37eqtr4i 2231 . 2  |-  1R  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  .R  [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  )
392, 38eqtr4i 2231 1  |-  ( -1R 
.R  -1R )  =  1R
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646  (class class class)co 5967   [cec 6641   P.cnp 7439   1Pc1p 7440    +P. cpp 7441    .P. cmp 7442    ~R cer 7444   1Rc1r 7447   -1Rcm1r 7448    .R cmr 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-imp 7617  df-enr 7874  df-nr 7875  df-mr 7877  df-1r 7880  df-m1r 7881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator