ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1m1sr Unicode version

Theorem m1m1sr 7760
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
m1m1sr  |-  ( -1R 
.R  -1R )  =  1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 7732 . . 3  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
21, 1oveq12i 5887 . 2  |-  ( -1R 
.R  -1R )  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  .R  [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  )
3 df-1r 7731 . . 3  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
4 1pr 7553 . . . . 5  |-  1P  e.  P.
5 addclpr 7536 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
64, 4, 5mp2an 426 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
7 mulsrpr 7745 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  )
84, 6, 4, 6, 7mp4an 427 . . . 4  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R
9 mulclpr 7571 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( 1P  +P.  1P ) )  e.  P. )
104, 6, 9mp2an 426 . . . . . . . 8  |-  ( 1P 
.P.  ( 1P  +P.  1P ) )  e.  P.
11 mulclpr 7571 . . . . . . . . 9  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  .P.  1P )  e. 
P. )
126, 4, 11mp2an 426 . . . . . . . 8  |-  ( ( 1P  +P.  1P )  .P.  1P )  e. 
P.
13 addclpr 7536 . . . . . . . 8  |-  ( ( ( 1P  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
( 1P  +P.  1P )  .P.  1P )  e. 
P. )  ->  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )  e.  P. )
1410, 12, 13mp2an 426 . . . . . . 7  |-  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )  e.  P.
15 addassprg 7578 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )  e.  P. )  ->  ( ( 1P 
+P.  1P )  +P.  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) ) )  =  ( 1P  +P.  ( 1P  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) ) ) )
164, 4, 14, 15mp3an 1337 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( 1P  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) ) )
17 1idpr 7591 . . . . . . . . 9  |-  ( 1P  e.  P.  ->  ( 1P  .P.  1P )  =  1P )
184, 17ax-mp 5 . . . . . . . 8  |-  ( 1P 
.P.  1P )  =  1P
19 distrprg 7587 . . . . . . . . . 10  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) ) )
206, 4, 4, 19mp3an 1337 . . . . . . . . 9  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )
21 mulcomprg 7579 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( 1P  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  .P.  1P ) )
224, 6, 21mp2an 426 . . . . . . . . . 10  |-  ( 1P 
.P.  ( 1P  +P.  1P ) )  =  ( ( 1P  +P.  1P )  .P.  1P )
2322oveq1i 5885 . . . . . . . . 9  |-  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
2420, 23eqtr4i 2201 . . . . . . . 8  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )
2518, 24oveq12i 5887 . . . . . . 7  |-  ( ( 1P  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  ( 1P  +P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )
2625oveq2i 5886 . . . . . 6  |-  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) )  =  ( 1P  +P.  ( 1P  +P.  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) ) )
2716, 26eqtr4i 2201 . . . . 5  |-  ( ( 1P  +P.  1P )  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) )
28 mulclpr 7571 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  .P.  1P )  e.  P. )
294, 4, 28mp2an 426 . . . . . . 7  |-  ( 1P 
.P.  1P )  e.  P.
30 mulclpr 7571 . . . . . . . 8  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( 1P  +P.  1P )  e. 
P. )  ->  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P. )
316, 6, 30mp2an 426 . . . . . . 7  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P.
32 addclpr 7536 . . . . . . 7  |-  ( ( ( 1P  .P.  1P )  e.  P.  /\  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P. )  ->  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
3329, 31, 32mp2an 426 . . . . . 6  |-  ( ( 1P  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e.  P.
34 enreceq 7735 . . . . . 6  |-  ( ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e. 
P.  /\  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) )  e.  P. ) )  ->  ( [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  <->  ( ( 1P  +P.  1P )  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ) ) )
356, 4, 33, 14, 34mp4an 427 . . . . 5  |-  ( [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  <->  ( ( 1P  +P.  1P )  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ) )
3627, 35mpbir 146 . . . 4  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R
378, 36eqtr4i 2201 . . 3  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
383, 37eqtr4i 2201 . 2  |-  1R  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  .R  [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  )
392, 38eqtr4i 2201 1  |-  ( -1R 
.R  -1R )  =  1R
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3596  (class class class)co 5875   [cec 6533   P.cnp 7290   1Pc1p 7291    +P. cpp 7292    .P. cmp 7293    ~R cer 7295   1Rc1r 7298   -1Rcm1r 7299    .R cmr 7301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-imp 7468  df-enr 7725  df-nr 7726  df-mr 7728  df-1r 7731  df-m1r 7732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator