ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1m1sr Unicode version

Theorem m1m1sr 7821
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
m1m1sr  |-  ( -1R 
.R  -1R )  =  1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 7793 . . 3  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
21, 1oveq12i 5930 . 2  |-  ( -1R 
.R  -1R )  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  .R  [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  )
3 df-1r 7792 . . 3  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
4 1pr 7614 . . . . 5  |-  1P  e.  P.
5 addclpr 7597 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
64, 4, 5mp2an 426 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
7 mulsrpr 7806 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  )
84, 6, 4, 6, 7mp4an 427 . . . 4  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R
9 mulclpr 7632 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( 1P  +P.  1P ) )  e.  P. )
104, 6, 9mp2an 426 . . . . . . . 8  |-  ( 1P 
.P.  ( 1P  +P.  1P ) )  e.  P.
11 mulclpr 7632 . . . . . . . . 9  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  .P.  1P )  e. 
P. )
126, 4, 11mp2an 426 . . . . . . . 8  |-  ( ( 1P  +P.  1P )  .P.  1P )  e. 
P.
13 addclpr 7597 . . . . . . . 8  |-  ( ( ( 1P  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
( 1P  +P.  1P )  .P.  1P )  e. 
P. )  ->  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )  e.  P. )
1410, 12, 13mp2an 426 . . . . . . 7  |-  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )  e.  P.
15 addassprg 7639 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )  e.  P. )  ->  ( ( 1P 
+P.  1P )  +P.  (
( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) ) )  =  ( 1P  +P.  ( 1P  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) ) ) )
164, 4, 14, 15mp3an 1348 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( 1P  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) ) )
17 1idpr 7652 . . . . . . . . 9  |-  ( 1P  e.  P.  ->  ( 1P  .P.  1P )  =  1P )
184, 17ax-mp 5 . . . . . . . 8  |-  ( 1P 
.P.  1P )  =  1P
19 distrprg 7648 . . . . . . . . . 10  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) ) )
206, 4, 4, 19mp3an 1348 . . . . . . . . 9  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )
21 mulcomprg 7640 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( 1P  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  .P.  1P ) )
224, 6, 21mp2an 426 . . . . . . . . . 10  |-  ( 1P 
.P.  ( 1P  +P.  1P ) )  =  ( ( 1P  +P.  1P )  .P.  1P )
2322oveq1i 5928 . . . . . . . . 9  |-  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )  =  ( ( ( 1P  +P.  1P )  .P.  1P )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
2420, 23eqtr4i 2217 . . . . . . . 8  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  =  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P 
+P.  1P )  .P.  1P ) )
2518, 24oveq12i 5930 . . . . . . 7  |-  ( ( 1P  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  ( 1P  +P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )
2625oveq2i 5929 . . . . . 6  |-  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) )  =  ( 1P  +P.  ( 1P  +P.  ( ( 1P  .P.  ( 1P 
+P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) ) )
2716, 26eqtr4i 2217 . . . . 5  |-  ( ( 1P  +P.  1P )  +P.  ( ( 1P 
.P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) )
28 mulclpr 7632 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  .P.  1P )  e.  P. )
294, 4, 28mp2an 426 . . . . . . 7  |-  ( 1P 
.P.  1P )  e.  P.
30 mulclpr 7632 . . . . . . . 8  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( 1P  +P.  1P )  e. 
P. )  ->  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P. )
316, 6, 30mp2an 426 . . . . . . 7  |-  ( ( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P.
32 addclpr 7597 . . . . . . 7  |-  ( ( ( 1P  .P.  1P )  e.  P.  /\  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) )  e.  P. )  ->  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
3329, 31, 32mp2an 426 . . . . . 6  |-  ( ( 1P  .P.  1P )  +P.  ( ( 1P 
+P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e.  P.
34 enreceq 7796 . . . . . 6  |-  ( ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) )  e. 
P.  /\  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  (
( 1P  +P.  1P )  .P.  1P ) )  e.  P. ) )  ->  ( [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  <->  ( ( 1P  +P.  1P )  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ) ) )
356, 4, 33, 14, 34mp4an 427 . . . . 5  |-  ( [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R  <->  ( ( 1P  +P.  1P )  +P.  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) ) )  =  ( 1P 
+P.  ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ) )
3627, 35mpbir 146 . . . 4  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( 1P 
.P.  1P )  +P.  (
( 1P  +P.  1P )  .P.  ( 1P  +P.  1P ) ) ) ,  ( ( 1P  .P.  ( 1P  +P.  1P ) )  +P.  ( ( 1P  +P.  1P )  .P.  1P ) )
>. ]  ~R
378, 36eqtr4i 2217 . . 3  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  .R 
[ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  )  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
383, 37eqtr4i 2217 . 2  |-  1R  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  .R  [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  )
392, 38eqtr4i 2217 1  |-  ( -1R 
.R  -1R )  =  1R
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   <.cop 3621  (class class class)co 5918   [cec 6585   P.cnp 7351   1Pc1p 7352    +P. cpp 7353    .P. cmp 7354    ~R cer 7356   1Rc1r 7359   -1Rcm1r 7360    .R cmr 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-enr 7786  df-nr 7787  df-mr 7789  df-1r 7792  df-m1r 7793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator