![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp4an | GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ 𝜑 |
mp4an.2 | ⊢ 𝜓 |
mp4an.3 | ⊢ 𝜒 |
mp4an.4 | ⊢ 𝜃 |
mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp4an | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝜑 ∧ 𝜓) |
4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
6 | 4, 5 | pm3.2i 272 | . 2 ⊢ (𝜒 ∧ 𝜃) |
7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
8 | 3, 6, 7 | mp2an 426 | 1 ⊢ 𝜏 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: 1lt2nq 7468 m1p1sr 7822 m1m1sr 7823 0lt1sr 7827 axi2m1 7937 mul4i 8169 add4i 8186 addsub4i 8317 muladdi 8430 lt2addi 8531 le2addi 8532 mulap0i 8677 divap0i 8781 divmuldivapi 8793 divmul13api 8794 divadddivapi 8795 divdivdivapi 8796 subrecapi 8861 8th4div3 9204 iap0 9208 fldiv4p1lem1div2 10377 sqrt2gt1lt2 11196 abs3lemi 11304 3dvds2dec 12010 flodddiv4 12078 nprmi 12265 sinhalfpilem 14958 cos0pilt1 15019 lgsdir2lem1 15176 lgsdir2lem5 15180 m1lgs 15233 2lgslem4 15251 |
Copyright terms: Public domain | W3C validator |