Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp4an | GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ 𝜑 |
mp4an.2 | ⊢ 𝜓 |
mp4an.3 | ⊢ 𝜒 |
mp4an.4 | ⊢ 𝜃 |
mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp4an | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
3 | 1, 2 | pm3.2i 270 | . 2 ⊢ (𝜑 ∧ 𝜓) |
4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
6 | 4, 5 | pm3.2i 270 | . 2 ⊢ (𝜒 ∧ 𝜃) |
7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
8 | 3, 6, 7 | mp2an 423 | 1 ⊢ 𝜏 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: 1lt2nq 7347 m1p1sr 7701 m1m1sr 7702 0lt1sr 7706 axi2m1 7816 mul4i 8046 add4i 8063 addsub4i 8194 muladdi 8307 lt2addi 8408 le2addi 8409 mulap0i 8553 divap0i 8656 divmuldivapi 8668 divmul13api 8669 divadddivapi 8670 divdivdivapi 8671 subrecapi 8736 8th4div3 9076 iap0 9080 fldiv4p1lem1div2 10240 sqrt2gt1lt2 10991 abs3lemi 11099 3dvds2dec 11803 flodddiv4 11871 nprmi 12056 sinhalfpilem 13352 cos0pilt1 13413 lgsdir2lem1 13569 lgsdir2lem5 13573 |
Copyright terms: Public domain | W3C validator |