![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp4an | GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ 𝜑 |
mp4an.2 | ⊢ 𝜓 |
mp4an.3 | ⊢ 𝜒 |
mp4an.4 | ⊢ 𝜃 |
mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp4an | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
3 | 1, 2 | pm3.2i 268 | . 2 ⊢ (𝜑 ∧ 𝜓) |
4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
6 | 4, 5 | pm3.2i 268 | . 2 ⊢ (𝜒 ∧ 𝜃) |
7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
8 | 3, 6, 7 | mp2an 420 | 1 ⊢ 𝜏 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: 1lt2nq 7115 m1p1sr 7456 m1m1sr 7457 0lt1sr 7461 axi2m1 7560 mul4i 7781 add4i 7798 addsub4i 7929 muladdi 8038 lt2addi 8139 le2addi 8140 mulap0i 8278 divap0i 8381 divmuldivapi 8393 divmul13api 8394 divadddivapi 8395 divdivdivapi 8396 8th4div3 8791 iap0 8795 fldiv4p1lem1div2 9919 sqrt2gt1lt2 10661 abs3lemi 10769 3dvds2dec 11358 flodddiv4 11426 nprmi 11598 |
Copyright terms: Public domain | W3C validator |