| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 | ⊢ 𝜑 |
| mp4an.2 | ⊢ 𝜓 |
| mp4an.3 | ⊢ 𝜒 |
| mp4an.4 | ⊢ 𝜃 |
| mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| mp4an | ⊢ 𝜏 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
| 3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝜑 ∧ 𝜓) |
| 4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
| 5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
| 6 | 4, 5 | pm3.2i 272 | . 2 ⊢ (𝜒 ∧ 𝜃) |
| 7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 8 | 3, 6, 7 | mp2an 426 | 1 ⊢ 𝜏 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7589 m1p1sr 7943 m1m1sr 7944 0lt1sr 7948 axi2m1 8058 mul4i 8290 add4i 8307 addsub4i 8438 muladdi 8551 lt2addi 8653 le2addi 8654 mulap0i 8799 divap0i 8903 divmuldivapi 8915 divmul13api 8916 divadddivapi 8917 divdivdivapi 8918 subrecapi 8983 8th4div3 9326 iap0 9330 fldiv4p1lem1div2 10520 sqrt2gt1lt2 11555 abs3lemi 11663 3dvds2dec 12372 flodddiv4 12442 nprmi 12641 modxai 12934 sinhalfpilem 15459 cos0pilt1 15520 lgsdir2lem1 15701 lgsdir2lem5 15705 m1lgs 15758 2lgslem4 15776 |
| Copyright terms: Public domain | W3C validator |