| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 | ⊢ 𝜑 |
| mp4an.2 | ⊢ 𝜓 |
| mp4an.3 | ⊢ 𝜒 |
| mp4an.4 | ⊢ 𝜃 |
| mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| mp4an | ⊢ 𝜏 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
| 3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝜑 ∧ 𝜓) |
| 4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
| 5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
| 6 | 4, 5 | pm3.2i 272 | . 2 ⊢ (𝜒 ∧ 𝜃) |
| 7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 8 | 3, 6, 7 | mp2an 426 | 1 ⊢ 𝜏 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7492 m1p1sr 7846 m1m1sr 7847 0lt1sr 7851 axi2m1 7961 mul4i 8193 add4i 8210 addsub4i 8341 muladdi 8454 lt2addi 8556 le2addi 8557 mulap0i 8702 divap0i 8806 divmuldivapi 8818 divmul13api 8819 divadddivapi 8820 divdivdivapi 8821 subrecapi 8886 8th4div3 9229 iap0 9233 fldiv4p1lem1div2 10414 sqrt2gt1lt2 11233 abs3lemi 11341 3dvds2dec 12050 flodddiv4 12120 nprmi 12319 modxai 12612 sinhalfpilem 15135 cos0pilt1 15196 lgsdir2lem1 15377 lgsdir2lem5 15381 m1lgs 15434 2lgslem4 15452 |
| Copyright terms: Public domain | W3C validator |