| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 | ⊢ 𝜑 |
| mp4an.2 | ⊢ 𝜓 |
| mp4an.3 | ⊢ 𝜒 |
| mp4an.4 | ⊢ 𝜃 |
| mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| mp4an | ⊢ 𝜏 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
| 3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝜑 ∧ 𝜓) |
| 4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
| 5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
| 6 | 4, 5 | pm3.2i 272 | . 2 ⊢ (𝜒 ∧ 𝜃) |
| 7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 8 | 3, 6, 7 | mp2an 426 | 1 ⊢ 𝜏 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7539 m1p1sr 7893 m1m1sr 7894 0lt1sr 7898 axi2m1 8008 mul4i 8240 add4i 8257 addsub4i 8388 muladdi 8501 lt2addi 8603 le2addi 8604 mulap0i 8749 divap0i 8853 divmuldivapi 8865 divmul13api 8866 divadddivapi 8867 divdivdivapi 8868 subrecapi 8933 8th4div3 9276 iap0 9280 fldiv4p1lem1div2 10470 sqrt2gt1lt2 11435 abs3lemi 11543 3dvds2dec 12252 flodddiv4 12322 nprmi 12521 modxai 12814 sinhalfpilem 15338 cos0pilt1 15399 lgsdir2lem1 15580 lgsdir2lem5 15584 m1lgs 15637 2lgslem4 15655 |
| Copyright terms: Public domain | W3C validator |