Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp4an | GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ 𝜑 |
mp4an.2 | ⊢ 𝜓 |
mp4an.3 | ⊢ 𝜒 |
mp4an.4 | ⊢ 𝜃 |
mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp4an | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
3 | 1, 2 | pm3.2i 270 | . 2 ⊢ (𝜑 ∧ 𝜓) |
4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
6 | 4, 5 | pm3.2i 270 | . 2 ⊢ (𝜒 ∧ 𝜃) |
7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
8 | 3, 6, 7 | mp2an 424 | 1 ⊢ 𝜏 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: 1lt2nq 7368 m1p1sr 7722 m1m1sr 7723 0lt1sr 7727 axi2m1 7837 mul4i 8067 add4i 8084 addsub4i 8215 muladdi 8328 lt2addi 8429 le2addi 8430 mulap0i 8574 divap0i 8677 divmuldivapi 8689 divmul13api 8690 divadddivapi 8691 divdivdivapi 8692 subrecapi 8757 8th4div3 9097 iap0 9101 fldiv4p1lem1div2 10261 sqrt2gt1lt2 11013 abs3lemi 11121 3dvds2dec 11825 flodddiv4 11893 nprmi 12078 sinhalfpilem 13506 cos0pilt1 13567 lgsdir2lem1 13723 lgsdir2lem5 13727 |
Copyright terms: Public domain | W3C validator |