ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdi Unicode version

Theorem muladdi 8307
Description: Product of two sums. (Contributed by NM, 17-May-1999.)
Hypotheses
Ref Expression
mulm1.1  |-  A  e.  CC
mulneg.2  |-  B  e.  CC
subdi.3  |-  C  e.  CC
muladdi.4  |-  D  e.  CC
Assertion
Ref Expression
muladdi  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )

Proof of Theorem muladdi
StepHypRef Expression
1 mulm1.1 . 2  |-  A  e.  CC
2 mulneg.2 . 2  |-  B  e.  CC
3 subdi.3 . 2  |-  C  e.  CC
4 muladdi.4 . 2  |-  D  e.  CC
5 muladd 8282 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
61, 2, 3, 4, 5mp4an 424 1  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    + caddc 7756    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-addcl 7849  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator