ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdi Unicode version

Theorem muladdi 8555
Description: Product of two sums. (Contributed by NM, 17-May-1999.)
Hypotheses
Ref Expression
mulm1.1  |-  A  e.  CC
mulneg.2  |-  B  e.  CC
subdi.3  |-  C  e.  CC
muladdi.4  |-  D  e.  CC
Assertion
Ref Expression
muladdi  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )

Proof of Theorem muladdi
StepHypRef Expression
1 mulm1.1 . 2  |-  A  e.  CC
2 mulneg.2 . 2  |-  B  e.  CC
3 subdi.3 . 2  |-  C  e.  CC
4 muladdi.4 . 2  |-  D  e.  CC
5 muladd 8530 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
61, 2, 3, 4, 5mp4an 427 1  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    x. cmul 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-addcl 8095  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-distr 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  karatsuba  12953
  Copyright terms: Public domain W3C validator