Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muladdi | Unicode version |
Description: Product of two sums. (Contributed by NM, 17-May-1999.) |
Ref | Expression |
---|---|
mulm1.1 | |
mulneg.2 | |
subdi.3 | |
muladdi.4 |
Ref | Expression |
---|---|
muladdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1.1 | . 2 | |
2 | mulneg.2 | . 2 | |
3 | subdi.3 | . 2 | |
4 | muladdi.4 | . 2 | |
5 | muladd 8282 | . 2 | |
6 | 1, 2, 3, 4, 5 | mp4an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 caddc 7756 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |