ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdi Unicode version

Theorem muladdi 8435
Description: Product of two sums. (Contributed by NM, 17-May-1999.)
Hypotheses
Ref Expression
mulm1.1  |-  A  e.  CC
mulneg.2  |-  B  e.  CC
subdi.3  |-  C  e.  CC
muladdi.4  |-  D  e.  CC
Assertion
Ref Expression
muladdi  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )

Proof of Theorem muladdi
StepHypRef Expression
1 mulm1.1 . 2  |-  A  e.  CC
2 mulneg.2 . 2  |-  B  e.  CC
3 subdi.3 . 2  |-  C  e.  CC
4 muladdi.4 . 2  |-  D  e.  CC
5 muladd 8410 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
61, 2, 3, 4, 5mp4an 427 1  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    + caddc 7882    x. cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-addcl 7975  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-distr 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  karatsuba  12599
  Copyright terms: Public domain W3C validator