ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdi Unicode version

Theorem muladdi 8366
Description: Product of two sums. (Contributed by NM, 17-May-1999.)
Hypotheses
Ref Expression
mulm1.1  |-  A  e.  CC
mulneg.2  |-  B  e.  CC
subdi.3  |-  C  e.  CC
muladdi.4  |-  D  e.  CC
Assertion
Ref Expression
muladdi  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )

Proof of Theorem muladdi
StepHypRef Expression
1 mulm1.1 . 2  |-  A  e.  CC
2 mulneg.2 . 2  |-  B  e.  CC
3 subdi.3 . 2  |-  C  e.  CC
4 muladdi.4 . 2  |-  D  e.  CC
5 muladd 8341 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
61, 2, 3, 4, 5mp4an 427 1  |-  ( ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  ( ( A  x.  D
)  +  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5875   CCcc 7809    + caddc 7814    x. cmul 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-addcl 7907  ax-mulcl 7909  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-distr 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator