ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptimass Unicode version

Theorem mptimass 5077
Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptimass.1  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
mptimass  |-  ( ph  ->  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem mptimass
StepHypRef Expression
1 mptima 5076 . 2  |-  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  ( A  i^i  C )  |->  B )
2 mptimass.1 . . . . 5  |-  ( ph  ->  C  C_  A )
3 sseqin2 3423 . . . . 5  |-  ( C 
C_  A  <->  ( A  i^i  C )  =  C )
42, 3sylib 122 . . . 4  |-  ( ph  ->  ( A  i^i  C
)  =  C )
54mpteq1d 4168 . . 3  |-  ( ph  ->  ( x  e.  ( A  i^i  C ) 
|->  B )  =  ( x  e.  C  |->  B ) )
65rneqd 4949 . 2  |-  ( ph  ->  ran  ( x  e.  ( A  i^i  C
)  |->  B )  =  ran  ( x  e.  C  |->  B ) )
71, 6eqtrid 2274 1  |-  ( ph  ->  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    i^i cin 3196    C_ wss 3197    |-> cmpt 4144   ran crn 4717   "cima 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4722  df-rel 4723  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator