ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptimass Unicode version

Theorem mptimass 5040
Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptimass.1  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
mptimass  |-  ( ph  ->  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem mptimass
StepHypRef Expression
1 mptima 5039 . 2  |-  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  ( A  i^i  C )  |->  B )
2 mptimass.1 . . . . 5  |-  ( ph  ->  C  C_  A )
3 sseqin2 3393 . . . . 5  |-  ( C 
C_  A  <->  ( A  i^i  C )  =  C )
42, 3sylib 122 . . . 4  |-  ( ph  ->  ( A  i^i  C
)  =  C )
54mpteq1d 4133 . . 3  |-  ( ph  ->  ( x  e.  ( A  i^i  C ) 
|->  B )  =  ( x  e.  C  |->  B ) )
65rneqd 4912 . 2  |-  ( ph  ->  ran  ( x  e.  ( A  i^i  C
)  |->  B )  =  ran  ( x  e.  C  |->  B ) )
71, 6eqtrid 2251 1  |-  ( ph  ->  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    i^i cin 3166    C_ wss 3167    |-> cmpt 4109   ran crn 4680   "cima 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-mpt 4111  df-xp 4685  df-rel 4686  df-cnv 4687  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator