ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptimass Unicode version

Theorem mptimass 5018
Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptimass.1  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
mptimass  |-  ( ph  ->  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem mptimass
StepHypRef Expression
1 mptima 5017 . 2  |-  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  ( A  i^i  C )  |->  B )
2 mptimass.1 . . . . 5  |-  ( ph  ->  C  C_  A )
3 sseqin2 3378 . . . . 5  |-  ( C 
C_  A  <->  ( A  i^i  C )  =  C )
42, 3sylib 122 . . . 4  |-  ( ph  ->  ( A  i^i  C
)  =  C )
54mpteq1d 4114 . . 3  |-  ( ph  ->  ( x  e.  ( A  i^i  C ) 
|->  B )  =  ( x  e.  C  |->  B ) )
65rneqd 4891 . 2  |-  ( ph  ->  ran  ( x  e.  ( A  i^i  C
)  |->  B )  =  ran  ( x  e.  C  |->  B ) )
71, 6eqtrid 2238 1  |-  ( ph  ->  ( ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3152    C_ wss 3153    |-> cmpt 4090   ran crn 4660   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator