ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptimass GIF version

Theorem mptimass 5057
Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptimass.1 (𝜑𝐶𝐴)
Assertion
Ref Expression
mptimass (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mptimass
StepHypRef Expression
1 mptima 5056 . 2 ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
2 mptimass.1 . . . . 5 (𝜑𝐶𝐴)
3 sseqin2 3403 . . . . 5 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
42, 3sylib 122 . . . 4 (𝜑 → (𝐴𝐶) = 𝐶)
54mpteq1d 4148 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥𝐶𝐵))
65rneqd 4929 . 2 (𝜑 → ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = ran (𝑥𝐶𝐵))
71, 6eqtrid 2254 1 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  cin 3176  wss 3177  cmpt 4124  ran crn 4697  cima 4699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-mpt 4126  df-xp 4702  df-rel 4703  df-cnv 4704  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator