ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaexg Unicode version

Theorem imaexg 4965
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
imaexg  |-  ( A  e.  V  ->  ( A " B )  e. 
_V )

Proof of Theorem imaexg
StepHypRef Expression
1 imassrn 4964 . 2  |-  ( A
" B )  C_  ran  A
2 rnexg 4876 . 2  |-  ( A  e.  V  ->  ran  A  e.  _V )
3 ssexg 4128 . 2  |-  ( ( ( A " B
)  C_  ran  A  /\  ran  A  e.  _V )  ->  ( A " B
)  e.  _V )
41, 2, 3sylancr 412 1  |-  ( A  e.  V  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ran crn 4612   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  imaex  4966  ecexg  6517  fopwdom  6814  isinfinf  6875
  Copyright terms: Public domain W3C validator