ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptresid Unicode version

Theorem mptresid 5027
Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
mptresid  |-  (  _I  |`  A )  =  ( x  e.  A  |->  x )
Distinct variable group:    x, A

Proof of Theorem mptresid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opabresid 5026 . 2  |-  (  _I  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
2 df-mpt 4118 . 2  |-  ( x  e.  A  |->  x )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
31, 2eqtr4i 2230 1  |-  (  _I  |`  A )  =  ( x  e.  A  |->  x )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2177   {copab 4115    |-> cmpt 4116    _I cid 4348    |` cres 4690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-res 4700
This theorem is referenced by:  idref  5843  restid2  13165  txswaphmeolem  14877  dvexp  15268  dvmptidcn  15271  dvmptid  15273  plyid  15303
  Copyright terms: Public domain W3C validator