ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptresid Unicode version

Theorem mptresid 4997
Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
mptresid  |-  (  _I  |`  A )  =  ( x  e.  A  |->  x )
Distinct variable group:    x, A

Proof of Theorem mptresid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opabresid 4996 . 2  |-  (  _I  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
2 df-mpt 4093 . 2  |-  ( x  e.  A  |->  x )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
31, 2eqtr4i 2217 1  |-  (  _I  |`  A )  =  ( x  e.  A  |->  x )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {copab 4090    |-> cmpt 4091    _I cid 4320    |` cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-res 4672
This theorem is referenced by:  idref  5800  restid2  12862  txswaphmeolem  14499  dvexp  14890  dvmptidcn  14893  dvmptid  14895  plyid  14925
  Copyright terms: Public domain W3C validator