ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptresid Unicode version

Theorem mptresid 4943
Description: The restricted identity expressed with the maps-to notation. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
mptresid  |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
Distinct variable group:    x, A

Proof of Theorem mptresid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4050 . 2  |-  ( x  e.  A  |->  x )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
2 opabresid 4942 . 2  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
31, 2eqtri 2191 1  |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {copab 4047    |-> cmpt 4048    _I cid 4271    |` cres 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-res 4621
This theorem is referenced by:  idref  5733  restid2  12575  txswaphmeolem  13073  dvexp  13428  dvmptidcn  13431
  Copyright terms: Public domain W3C validator