ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeolem Unicode version

Theorem txswaphmeolem 14994
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Distinct variable groups:    x, y, X   
x, Y, y

Proof of Theorem txswaphmeolem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( z  =  <. x ,  y
>.  ->  z  =  <. x ,  y >. )
21mpompt 6096 . 2  |-  ( z  e.  ( X  X.  Y )  |->  z )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y
>. )
3 mptresid 5059 . 2  |-  (  _I  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  z )
4 opelxpi 4751 . . . . . 6  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
54ancoms 268 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
65adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
7 eqidd 2230 . . . 4  |-  ( T. 
->  ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )
8 sneq 3677 . . . . . . . . . 10  |-  ( z  =  <. y ,  x >.  ->  { z }  =  { <. y ,  x >. } )
98cnveqd 4898 . . . . . . . . 9  |-  ( z  =  <. y ,  x >.  ->  `' { z }  =  `' { <. y ,  x >. } )
109unieqd 3899 . . . . . . . 8  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  U. `' { <. y ,  x >. } )
11 vex 2802 . . . . . . . . 9  |-  y  e. 
_V
12 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
13 opswapg 5215 . . . . . . . . 9  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  U. `' { <. y ,  x >. }  =  <. x ,  y >.
)
1411, 12, 13mp2an 426 . . . . . . . 8  |-  U. `' { <. y ,  x >. }  =  <. x ,  y >.
1510, 14eqtrdi 2278 . . . . . . 7  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  <. x ,  y >. )
1615mpompt 6096 . . . . . 6  |-  ( z  e.  ( Y  X.  X )  |->  U. `' { z } )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1716eqcomi 2233 . . . . 5  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( z  e.  ( Y  X.  X
)  |->  U. `' { z } )
1817a1i 9 . . . 4  |-  ( T. 
->  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
)  =  ( z  e.  ( Y  X.  X )  |->  U. `' { z } ) )
196, 7, 18, 15fmpoco 6362 . . 3  |-  ( T. 
->  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y >. )
)
2019mptru 1404 . 2  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |-> 
<. x ,  y >.
)
212, 3, 203eqtr4ri 2261 1  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   U.cuni 3888    |-> cmpt 4145    _I cid 4379    X. cxp 4717   `'ccnv 4718    |` cres 4721    o. ccom 4723    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287
This theorem is referenced by:  txswaphmeo  14995
  Copyright terms: Public domain W3C validator