ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeolem Unicode version

Theorem txswaphmeolem 14907
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Distinct variable groups:    x, y, X   
x, Y, y

Proof of Theorem txswaphmeolem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( z  =  <. x ,  y
>.  ->  z  =  <. x ,  y >. )
21mpompt 6060 . 2  |-  ( z  e.  ( X  X.  Y )  |->  z )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y
>. )
3 mptresid 5032 . 2  |-  (  _I  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  z )
4 opelxpi 4725 . . . . . 6  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
54ancoms 268 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
65adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
7 eqidd 2208 . . . 4  |-  ( T. 
->  ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )
8 sneq 3654 . . . . . . . . . 10  |-  ( z  =  <. y ,  x >.  ->  { z }  =  { <. y ,  x >. } )
98cnveqd 4872 . . . . . . . . 9  |-  ( z  =  <. y ,  x >.  ->  `' { z }  =  `' { <. y ,  x >. } )
109unieqd 3875 . . . . . . . 8  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  U. `' { <. y ,  x >. } )
11 vex 2779 . . . . . . . . 9  |-  y  e. 
_V
12 vex 2779 . . . . . . . . 9  |-  x  e. 
_V
13 opswapg 5188 . . . . . . . . 9  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  U. `' { <. y ,  x >. }  =  <. x ,  y >.
)
1411, 12, 13mp2an 426 . . . . . . . 8  |-  U. `' { <. y ,  x >. }  =  <. x ,  y >.
1510, 14eqtrdi 2256 . . . . . . 7  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  <. x ,  y >. )
1615mpompt 6060 . . . . . 6  |-  ( z  e.  ( Y  X.  X )  |->  U. `' { z } )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1716eqcomi 2211 . . . . 5  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( z  e.  ( Y  X.  X
)  |->  U. `' { z } )
1817a1i 9 . . . 4  |-  ( T. 
->  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
)  =  ( z  e.  ( Y  X.  X )  |->  U. `' { z } ) )
196, 7, 18, 15fmpoco 6325 . . 3  |-  ( T. 
->  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y >. )
)
2019mptru 1382 . 2  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |-> 
<. x ,  y >.
)
212, 3, 203eqtr4ri 2239 1  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   T. wtru 1374    e. wcel 2178   _Vcvv 2776   {csn 3643   <.cop 3646   U.cuni 3864    |-> cmpt 4121    _I cid 4353    X. cxp 4691   `'ccnv 4692    |` cres 4695    o. ccom 4697    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250
This theorem is referenced by:  txswaphmeo  14908
  Copyright terms: Public domain W3C validator