Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txswaphmeolem | Unicode version |
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeolem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4641 | . . . . . 6 | |
2 | 1 | ancoms 266 | . . . . 5 |
3 | 2 | adantl 275 | . . . 4 |
4 | eqidd 2171 | . . . 4 | |
5 | sneq 3592 | . . . . . . . . . 10 | |
6 | 5 | cnveqd 4785 | . . . . . . . . 9 |
7 | 6 | unieqd 3805 | . . . . . . . 8 |
8 | vex 2733 | . . . . . . . . 9 | |
9 | vex 2733 | . . . . . . . . 9 | |
10 | opswapg 5095 | . . . . . . . . 9 | |
11 | 8, 9, 10 | mp2an 424 | . . . . . . . 8 |
12 | 7, 11 | eqtrdi 2219 | . . . . . . 7 |
13 | 12 | mpompt 5943 | . . . . . 6 |
14 | 13 | eqcomi 2174 | . . . . 5 |
15 | 14 | a1i 9 | . . . 4 |
16 | 3, 4, 15, 12 | fmpoco 6193 | . . 3 |
17 | 16 | mptru 1357 | . 2 |
18 | id 19 | . . 3 | |
19 | 18 | mpompt 5943 | . 2 |
20 | mptresid 4943 | . 2 | |
21 | 17, 19, 20 | 3eqtr2i 2197 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wtru 1349 wcel 2141 cvv 2730 csn 3581 cop 3584 cuni 3794 cmpt 4048 cid 4271 cxp 4607 ccnv 4608 cres 4611 ccom 4613 cmpo 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 |
This theorem is referenced by: txswaphmeo 13080 |
Copyright terms: Public domain | W3C validator |