ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restid2 Unicode version

Theorem restid2 12833
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restid2  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )

Proof of Theorem restid2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwexg 4205 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  _V )
21adantr 276 . . . 4  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ~P A  e. 
_V )
3 simpr 110 . . . 4  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  J  C_  ~P A )
42, 3ssexd 4165 . . 3  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  J  e.  _V )
5 simpl 109 . . 3  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  A  e.  V
)
6 restval 12830 . . 3  |-  ( ( J  e.  _V  /\  A  e.  V )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
74, 5, 6syl2anc 411 . 2  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
83sselda 3175 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  J  C_  ~P A
)  /\  x  e.  J )  ->  x  e.  ~P A )
98elpwid 3608 . . . . . . 7  |-  ( ( ( A  e.  V  /\  J  C_  ~P A
)  /\  x  e.  J )  ->  x  C_  A )
10 df-ss 3162 . . . . . . 7  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
119, 10sylib 122 . . . . . 6  |-  ( ( ( A  e.  V  /\  J  C_  ~P A
)  /\  x  e.  J )  ->  (
x  i^i  A )  =  x )
1211mpteq2dva 4115 . . . . 5  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( x  e.  J  |->  ( x  i^i 
A ) )  =  ( x  e.  J  |->  x ) )
13 mptresid 4986 . . . . 5  |-  ( x  e.  J  |->  x )  =  (  _I  |`  J )
1412, 13eqtrdi 2238 . . . 4  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( x  e.  J  |->  ( x  i^i 
A ) )  =  (  _I  |`  J ) )
1514rneqd 4881 . . 3  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ran  ( x  e.  J  |->  ( x  i^i  A ) )  =  ran  (  _I  |`  J ) )
16 rnresi 5010 . . 3  |-  ran  (  _I  |`  J )  =  J
1715, 16eqtrdi 2238 . 2  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ran  ( x  e.  J  |->  ( x  i^i  A ) )  =  J )
187, 17eqtrd 2222 1  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2756    i^i cin 3148    C_ wss 3149   ~Pcpw 3597    |-> cmpt 4086    _I cid 4313   ran crn 4652    |` cres 4653  (class class class)co 5906   ↾t crest 12824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-id 4318  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-ov 5909  df-oprab 5910  df-mpo 5911  df-rest 12826
This theorem is referenced by:  restid  12835  topnidg  12837
  Copyright terms: Public domain W3C validator