ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restid2 Unicode version

Theorem restid2 12565
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restid2  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )

Proof of Theorem restid2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwexg 4159 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  _V )
21adantr 274 . . . 4  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ~P A  e. 
_V )
3 simpr 109 . . . 4  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  J  C_  ~P A )
42, 3ssexd 4122 . . 3  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  J  e.  _V )
5 simpl 108 . . 3  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  A  e.  V
)
6 restval 12562 . . 3  |-  ( ( J  e.  _V  /\  A  e.  V )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
74, 5, 6syl2anc 409 . 2  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
83sselda 3142 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  J  C_  ~P A
)  /\  x  e.  J )  ->  x  e.  ~P A )
98elpwid 3570 . . . . . . 7  |-  ( ( ( A  e.  V  /\  J  C_  ~P A
)  /\  x  e.  J )  ->  x  C_  A )
10 df-ss 3129 . . . . . . 7  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
119, 10sylib 121 . . . . . 6  |-  ( ( ( A  e.  V  /\  J  C_  ~P A
)  /\  x  e.  J )  ->  (
x  i^i  A )  =  x )
1211mpteq2dva 4072 . . . . 5  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( x  e.  J  |->  ( x  i^i 
A ) )  =  ( x  e.  J  |->  x ) )
13 mptresid 4938 . . . . 5  |-  ( x  e.  J  |->  x )  =  (  _I  |`  J )
1412, 13eqtrdi 2215 . . . 4  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( x  e.  J  |->  ( x  i^i 
A ) )  =  (  _I  |`  J ) )
1514rneqd 4833 . . 3  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ran  ( x  e.  J  |->  ( x  i^i  A ) )  =  ran  (  _I  |`  J ) )
16 rnresi 4961 . . 3  |-  ran  (  _I  |`  J )  =  J
1715, 16eqtrdi 2215 . 2  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ran  ( x  e.  J  |->  ( x  i^i  A ) )  =  J )
187, 17eqtrd 2198 1  |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559    |-> cmpt 4043    _I cid 4266   ran crn 4605    |` cres 4606  (class class class)co 5842   ↾t crest 12556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-rest 12558
This theorem is referenced by:  restid  12567  topnidg  12569
  Copyright terms: Public domain W3C validator