ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresi Unicode version

Theorem dmresi 5015
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
dmresi  |-  dom  (  _I  |`  A )  =  A

Proof of Theorem dmresi
StepHypRef Expression
1 ssv 3215 . . 3  |-  A  C_  _V
2 dmi 4894 . . 3  |-  dom  _I  =  _V
31, 2sseqtrri 3228 . 2  |-  A  C_  dom  _I
4 ssdmres 4982 . 2  |-  ( A 
C_  dom  _I  <->  dom  (  _I  |`  A )  =  A )
53, 4mpbi 145 1  |-  dom  (  _I  |`  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2772    C_ wss 3166    _I cid 4336   dom cdm 4676    |` cres 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-dm 4686  df-res 4688
This theorem is referenced by:  fnresi  5395  iordsmo  6385  residfi  7044
  Copyright terms: Public domain W3C validator