ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresi Unicode version

Theorem dmresi 4998
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
dmresi  |-  dom  (  _I  |`  A )  =  A

Proof of Theorem dmresi
StepHypRef Expression
1 ssv 3202 . . 3  |-  A  C_  _V
2 dmi 4878 . . 3  |-  dom  _I  =  _V
31, 2sseqtrri 3215 . 2  |-  A  C_  dom  _I
4 ssdmres 4965 . 2  |-  ( A 
C_  dom  _I  <->  dom  (  _I  |`  A )  =  A )
53, 4mpbi 145 1  |-  dom  (  _I  |`  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2760    C_ wss 3154    _I cid 4320   dom cdm 4660    |` cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-dm 4670  df-res 4672
This theorem is referenced by:  fnresi  5372  iordsmo  6352  residfi  7001
  Copyright terms: Public domain W3C validator