ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabresid Unicode version

Theorem opabresid 4778
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
Distinct variable group:    x, A, y

Proof of Theorem opabresid
StepHypRef Expression
1 resopab 4769 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  x ) }
2 equcom 1640 . . . . 5  |-  ( y  =  x  <->  x  =  y )
32opabbii 3911 . . . 4  |-  { <. x ,  y >.  |  y  =  x }  =  { <. x ,  y
>.  |  x  =  y }
4 df-id 4129 . . . 4  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
53, 4eqtr4i 2112 . . 3  |-  { <. x ,  y >.  |  y  =  x }  =  _I
65reseq1i 4722 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  (  _I  |`  A )
71, 6eqtr3i 2111 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1290    e. wcel 1439   {copab 3904    _I cid 4124    |` cres 4454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-res 4464
This theorem is referenced by:  mptresid  4779
  Copyright terms: Public domain W3C validator