ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabresid Unicode version

Theorem opabresid 4999
Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid  |-  (  _I  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
Distinct variable group:    x, A, y

Proof of Theorem opabresid
StepHypRef Expression
1 df-id 4328 . . . 4  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
2 equcom 1720 . . . . 5  |-  ( x  =  y  <->  y  =  x )
32opabbii 4100 . . . 4  |-  { <. x ,  y >.  |  x  =  y }  =  { <. x ,  y
>.  |  y  =  x }
41, 3eqtri 2217 . . 3  |-  _I  =  { <. x ,  y
>.  |  y  =  x }
54reseq1i 4942 . 2  |-  (  _I  |`  A )  =  ( { <. x ,  y
>.  |  y  =  x }  |`  A )
6 resopab 4990 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  x ) }
75, 6eqtri 2217 1  |-  (  _I  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {copab 4093    _I cid 4323    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  mptresid  5000
  Copyright terms: Public domain W3C validator