ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabresid Unicode version

Theorem opabresid 4944
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
Distinct variable group:    x, A, y

Proof of Theorem opabresid
StepHypRef Expression
1 resopab 4935 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  x ) }
2 equcom 1699 . . . . 5  |-  ( y  =  x  <->  x  =  y )
32opabbii 4056 . . . 4  |-  { <. x ,  y >.  |  y  =  x }  =  { <. x ,  y
>.  |  x  =  y }
4 df-id 4278 . . . 4  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
53, 4eqtr4i 2194 . . 3  |-  { <. x ,  y >.  |  y  =  x }  =  _I
65reseq1i 4887 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  (  _I  |`  A )
71, 6eqtr3i 2193 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {copab 4049    _I cid 4273    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by:  mptresid  4945
  Copyright terms: Public domain W3C validator