ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptresid GIF version

Theorem mptresid 4922
Description: The restricted identity expressed with the maps-to notation. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
mptresid (𝑥𝐴𝑥) = ( I ↾ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mptresid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4029 . 2 (𝑥𝐴𝑥) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
2 opabresid 4921 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
31, 2eqtri 2178 1 (𝑥𝐴𝑥) = ( I ↾ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wcel 2128  {copab 4026  cmpt 4027   I cid 4250  cres 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-res 4600
This theorem is referenced by:  idref  5709  restid2  12430  txswaphmeolem  12790  dvexp  13145  dvmptidcn  13148
  Copyright terms: Public domain W3C validator