| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem11 | Unicode version | ||
| Description: Lemma for pythagtrip 12792. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem11.1 |
|
| Ref | Expression |
|---|---|
| pythagtriplem11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem11.1 |
. 2
| |
| 2 | pythagtriplem9 12782 |
. . . . . 6
| |
| 3 | 2 | nnzd 9556 |
. . . . 5
|
| 4 | simp3r 1050 |
. . . . . . 7
| |
| 5 | 2z 9462 |
. . . . . . . . . 10
| |
| 6 | nnz 9453 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | 3ad2ant3 1044 |
. . . . . . . . . . . 12
|
| 8 | nnz 9453 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | 3ad2ant2 1043 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | zaddcld 9561 |
. . . . . . . . . . 11
|
| 11 | 10 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 12 | nnz 9453 |
. . . . . . . . . . . 12
| |
| 13 | 12 | 3ad2ant1 1042 |
. . . . . . . . . . 11
|
| 14 | 13 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 15 | dvdsgcdb 12520 |
. . . . . . . . . 10
| |
| 16 | 5, 11, 14, 15 | mp3an2i 1376 |
. . . . . . . . 9
|
| 17 | 16 | biimpar 297 |
. . . . . . . 8
|
| 18 | 17 | simprd 114 |
. . . . . . 7
|
| 19 | 4, 18 | mtand 669 |
. . . . . 6
|
| 20 | pythagtriplem7 12780 |
. . . . . . 7
| |
| 21 | 20 | breq2d 4094 |
. . . . . 6
|
| 22 | 19, 21 | mtbird 677 |
. . . . 5
|
| 23 | pythagtriplem8 12781 |
. . . . . 6
| |
| 24 | 23 | nnzd 9556 |
. . . . 5
|
| 25 | 7, 9 | zsubcld 9562 |
. . . . . . . . . . 11
|
| 26 | 25 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 27 | dvdsgcdb 12520 |
. . . . . . . . . 10
| |
| 28 | 5, 26, 14, 27 | mp3an2i 1376 |
. . . . . . . . 9
|
| 29 | 28 | biimpar 297 |
. . . . . . . 8
|
| 30 | 29 | simprd 114 |
. . . . . . 7
|
| 31 | 4, 30 | mtand 669 |
. . . . . 6
|
| 32 | pythagtriplem6 12779 |
. . . . . . 7
| |
| 33 | 32 | breq2d 4094 |
. . . . . 6
|
| 34 | 31, 33 | mtbird 677 |
. . . . 5
|
| 35 | opoe 12392 |
. . . . 5
| |
| 36 | 3, 22, 24, 34, 35 | syl22anc 1272 |
. . . 4
|
| 37 | 2, 23 | nnaddcld 9146 |
. . . . . 6
|
| 38 | 37 | nnzd 9556 |
. . . . 5
|
| 39 | evend2 12386 |
. . . . 5
| |
| 40 | 38, 39 | syl 14 |
. . . 4
|
| 41 | 36, 40 | mpbid 147 |
. . 3
|
| 42 | 2 | nnred 9111 |
. . . . 5
|
| 43 | 23 | nnred 9111 |
. . . . 5
|
| 44 | 2 | nngt0d 9142 |
. . . . 5
|
| 45 | 23 | nngt0d 9142 |
. . . . 5
|
| 46 | 42, 43, 44, 45 | addgt0d 8656 |
. . . 4
|
| 47 | 37 | nnred 9111 |
. . . . 5
|
| 48 | halfpos2 9329 |
. . . . 5
| |
| 49 | 47, 48 | syl 14 |
. . . 4
|
| 50 | 46, 49 | mpbid 147 |
. . 3
|
| 51 | elnnz 9444 |
. . 3
| |
| 52 | 41, 50, 51 | sylanbrc 417 |
. 2
|
| 53 | 1, 52 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-2o 6553 df-er 6670 df-en 6878 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-prm 12616 |
| This theorem is referenced by: pythagtriplem18 12790 |
| Copyright terms: Public domain | W3C validator |