ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseulemle Unicode version

Theorem pw2dvdseulemle 11856
Description: Lemma for pw2dvdseu 11857. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
pw2dvdseulemle.n  |-  ( ph  ->  N  e.  NN )
pw2dvdseulemle.a  |-  ( ph  ->  A  e.  NN0 )
pw2dvdseulemle.b  |-  ( ph  ->  B  e.  NN0 )
pw2dvdseulemle.2a  |-  ( ph  ->  ( 2 ^ A
)  ||  N )
pw2dvdseulemle.n2b  |-  ( ph  ->  -.  ( 2 ^ ( B  +  1 ) )  ||  N
)
Assertion
Ref Expression
pw2dvdseulemle  |-  ( ph  ->  A  <_  B )

Proof of Theorem pw2dvdseulemle
StepHypRef Expression
1 pw2dvdseulemle.a . . 3  |-  ( ph  ->  A  e.  NN0 )
21nn0red 9043 . 2  |-  ( ph  ->  A  e.  RR )
3 pw2dvdseulemle.b . . 3  |-  ( ph  ->  B  e.  NN0 )
43nn0red 9043 . 2  |-  ( ph  ->  B  e.  RR )
5 pw2dvdseulemle.n2b . . 3  |-  ( ph  ->  -.  ( 2 ^ ( B  +  1 ) )  ||  N
)
6 2cnd 8805 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  2  e.  CC )
73adantr 274 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  B  e.  NN0 )
8 peano2nn0 9029 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
97, 8syl 14 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  e. 
NN0 )
101adantr 274 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  A  e.  NN0 )
11 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  B  <  A )
12 nn0ltp1le 9128 . . . . . . . . 9  |-  ( ( B  e.  NN0  /\  A  e.  NN0 )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
137, 10, 12syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( B  <  A  <->  ( B  + 
1 )  <_  A
) )
1411, 13mpbid 146 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  <_  A )
15 nn0sub2 9136 . . . . . . 7  |-  ( ( ( B  +  1 )  e.  NN0  /\  A  e.  NN0  /\  ( B  +  1 )  <_  A )  -> 
( A  -  ( B  +  1 ) )  e.  NN0 )
169, 10, 14, 15syl3anc 1216 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( A  -  ( B  + 
1 ) )  e. 
NN0 )
176, 16, 9expaddd 10438 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  =  ( ( 2 ^ ( B  +  1 ) )  x.  (
2 ^ ( A  -  ( B  + 
1 ) ) ) ) )
189nn0cnd 9044 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  e.  CC )
1910nn0cnd 9044 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  A  e.  CC )
2018, 19pncan3d 8088 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( ( B  +  1 )  +  ( A  -  ( B  +  1
) ) )  =  A )
2120oveq2d 5790 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  =  ( 2 ^ A
) )
22 pw2dvdseulemle.2a . . . . . . 7  |-  ( ph  ->  ( 2 ^ A
)  ||  N )
2322adantr 274 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ A )  ||  N )
2421, 23eqbrtrd 3950 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  ||  N )
2517, 24eqbrtrrd 3952 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  ( (
2 ^ ( B  +  1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1 ) ) ) )  ||  N )
26 2nn 8893 . . . . . . . 8  |-  2  e.  NN
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  2  e.  NN )
2827, 9nnexpcld 10458 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  e.  NN )
2928nnzd 9184 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  e.  ZZ )
3027, 16nnexpcld 10458 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( A  -  ( B  +  1
) ) )  e.  NN )
3130nnzd 9184 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( A  -  ( B  +  1
) ) )  e.  ZZ )
32 pw2dvdseulemle.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
3332adantr 274 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  N  e.  NN )
3433nnzd 9184 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  N  e.  ZZ )
35 muldvds1 11529 . . . . 5  |-  ( ( ( 2 ^ ( B  +  1 ) )  e.  ZZ  /\  ( 2 ^ ( A  -  ( B  +  1 ) ) )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( 2 ^ ( B  + 
1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1 ) ) ) )  ||  N  ->  ( 2 ^ ( B  +  1 ) )  ||  N ) )
3629, 31, 34, 35syl3anc 1216 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  ( (
( 2 ^ ( B  +  1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1
) ) ) ) 
||  N  ->  (
2 ^ ( B  +  1 ) ) 
||  N ) )
3725, 36mpd 13 . . 3  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  ||  N )
385, 37mtand 654 . 2  |-  ( ph  ->  -.  B  <  A
)
392, 4, 38nltled 7895 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   1c1 7633    + caddc 7635    x. cmul 7637    < clt 7812    <_ cle 7813    - cmin 7945   NNcn 8732   2c2 8783   NN0cn0 8989   ZZcz 9066   ^cexp 10304    || cdvds 11504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-n0 8990  df-z 9067  df-uz 9339  df-seqfrec 10231  df-exp 10305  df-dvds 11505
This theorem is referenced by:  pw2dvdseu  11857
  Copyright terms: Public domain W3C validator