ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseulemle Unicode version

Theorem pw2dvdseulemle 12684
Description: Lemma for pw2dvdseu 12685. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
pw2dvdseulemle.n  |-  ( ph  ->  N  e.  NN )
pw2dvdseulemle.a  |-  ( ph  ->  A  e.  NN0 )
pw2dvdseulemle.b  |-  ( ph  ->  B  e.  NN0 )
pw2dvdseulemle.2a  |-  ( ph  ->  ( 2 ^ A
)  ||  N )
pw2dvdseulemle.n2b  |-  ( ph  ->  -.  ( 2 ^ ( B  +  1 ) )  ||  N
)
Assertion
Ref Expression
pw2dvdseulemle  |-  ( ph  ->  A  <_  B )

Proof of Theorem pw2dvdseulemle
StepHypRef Expression
1 pw2dvdseulemle.a . . 3  |-  ( ph  ->  A  e.  NN0 )
21nn0red 9419 . 2  |-  ( ph  ->  A  e.  RR )
3 pw2dvdseulemle.b . . 3  |-  ( ph  ->  B  e.  NN0 )
43nn0red 9419 . 2  |-  ( ph  ->  B  e.  RR )
5 pw2dvdseulemle.n2b . . 3  |-  ( ph  ->  -.  ( 2 ^ ( B  +  1 ) )  ||  N
)
6 2cnd 9179 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  2  e.  CC )
73adantr 276 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  B  e.  NN0 )
8 peano2nn0 9405 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
97, 8syl 14 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  e. 
NN0 )
101adantr 276 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  A  e.  NN0 )
11 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  B  <  A )
12 nn0ltp1le 9505 . . . . . . . . 9  |-  ( ( B  e.  NN0  /\  A  e.  NN0 )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
137, 10, 12syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( B  <  A  <->  ( B  + 
1 )  <_  A
) )
1411, 13mpbid 147 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  <_  A )
15 nn0sub2 9516 . . . . . . 7  |-  ( ( ( B  +  1 )  e.  NN0  /\  A  e.  NN0  /\  ( B  +  1 )  <_  A )  -> 
( A  -  ( B  +  1 ) )  e.  NN0 )
169, 10, 14, 15syl3anc 1271 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( A  -  ( B  + 
1 ) )  e. 
NN0 )
176, 16, 9expaddd 10892 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  =  ( ( 2 ^ ( B  +  1 ) )  x.  (
2 ^ ( A  -  ( B  + 
1 ) ) ) ) )
189nn0cnd 9420 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  e.  CC )
1910nn0cnd 9420 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  A  e.  CC )
2018, 19pncan3d 8456 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( ( B  +  1 )  +  ( A  -  ( B  +  1
) ) )  =  A )
2120oveq2d 6016 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  =  ( 2 ^ A
) )
22 pw2dvdseulemle.2a . . . . . . 7  |-  ( ph  ->  ( 2 ^ A
)  ||  N )
2322adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ A )  ||  N )
2421, 23eqbrtrd 4104 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  ||  N )
2517, 24eqbrtrrd 4106 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  ( (
2 ^ ( B  +  1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1 ) ) ) )  ||  N )
26 2nn 9268 . . . . . . . 8  |-  2  e.  NN
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  2  e.  NN )
2827, 9nnexpcld 10912 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  e.  NN )
2928nnzd 9564 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  e.  ZZ )
3027, 16nnexpcld 10912 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( A  -  ( B  +  1
) ) )  e.  NN )
3130nnzd 9564 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( A  -  ( B  +  1
) ) )  e.  ZZ )
32 pw2dvdseulemle.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
3332adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  N  e.  NN )
3433nnzd 9564 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  N  e.  ZZ )
35 muldvds1 12322 . . . . 5  |-  ( ( ( 2 ^ ( B  +  1 ) )  e.  ZZ  /\  ( 2 ^ ( A  -  ( B  +  1 ) ) )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( 2 ^ ( B  + 
1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1 ) ) ) )  ||  N  ->  ( 2 ^ ( B  +  1 ) )  ||  N ) )
3629, 31, 34, 35syl3anc 1271 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  ( (
( 2 ^ ( B  +  1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1
) ) ) ) 
||  N  ->  (
2 ^ ( B  +  1 ) ) 
||  N ) )
3725, 36mpd 13 . . 3  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  ||  N )
385, 37mtand 669 . 2  |-  ( ph  ->  -.  B  <  A
)
392, 4, 38nltled 8263 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    <_ cle 8178    - cmin 8313   NNcn 9106   2c2 9157   NN0cn0 9365   ZZcz 9442   ^cexp 10755    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  pw2dvdseu  12685
  Copyright terms: Public domain W3C validator