| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem13 | Unicode version | ||
| Description: Lemma for pythagtrip 12650. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem13.1 |
|
| Ref | Expression |
|---|---|
| pythagtriplem13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem13.1 |
. 2
| |
| 2 | pythagtriplem9 12640 |
. . . . . 6
| |
| 3 | 2 | nnzd 9501 |
. . . . 5
|
| 4 | simp3r 1029 |
. . . . . . 7
| |
| 5 | 2z 9407 |
. . . . . . . . . 10
| |
| 6 | simp3 1002 |
. . . . . . . . . . . . 13
| |
| 7 | simp2 1001 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | nnaddcld 9091 |
. . . . . . . . . . . 12
|
| 9 | 8 | nnzd 9501 |
. . . . . . . . . . 11
|
| 10 | 9 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 11 | nnz 9398 |
. . . . . . . . . . . 12
| |
| 12 | 11 | 3ad2ant1 1021 |
. . . . . . . . . . 11
|
| 13 | 12 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 14 | dvdsgcdb 12378 |
. . . . . . . . . 10
| |
| 15 | 5, 10, 13, 14 | mp3an2i 1355 |
. . . . . . . . 9
|
| 16 | 15 | biimpar 297 |
. . . . . . . 8
|
| 17 | 16 | simprd 114 |
. . . . . . 7
|
| 18 | 4, 17 | mtand 667 |
. . . . . 6
|
| 19 | pythagtriplem7 12638 |
. . . . . . 7
| |
| 20 | 19 | breq2d 4059 |
. . . . . 6
|
| 21 | 18, 20 | mtbird 675 |
. . . . 5
|
| 22 | pythagtriplem8 12639 |
. . . . . 6
| |
| 23 | 22 | nnzd 9501 |
. . . . 5
|
| 24 | nnz 9398 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | 3ad2ant3 1023 |
. . . . . . . . . . . 12
|
| 26 | nnz 9398 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | 3ad2ant2 1022 |
. . . . . . . . . . . 12
|
| 28 | 25, 27 | zsubcld 9507 |
. . . . . . . . . . 11
|
| 29 | 28 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 30 | dvdsgcdb 12378 |
. . . . . . . . . 10
| |
| 31 | 5, 29, 13, 30 | mp3an2i 1355 |
. . . . . . . . 9
|
| 32 | 31 | biimpar 297 |
. . . . . . . 8
|
| 33 | 32 | simprd 114 |
. . . . . . 7
|
| 34 | 4, 33 | mtand 667 |
. . . . . 6
|
| 35 | pythagtriplem6 12637 |
. . . . . . 7
| |
| 36 | 35 | breq2d 4059 |
. . . . . 6
|
| 37 | 34, 36 | mtbird 675 |
. . . . 5
|
| 38 | omoe 12251 |
. . . . 5
| |
| 39 | 3, 21, 23, 37, 38 | syl22anc 1251 |
. . . 4
|
| 40 | 28 | zred 9502 |
. . . . . . . . . 10
|
| 41 | 40 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 42 | simp13 1032 |
. . . . . . . . . 10
| |
| 43 | 42 | nnred 9056 |
. . . . . . . . 9
|
| 44 | 8 | nnred 9056 |
. . . . . . . . . 10
|
| 45 | 44 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 46 | nnrp 9792 |
. . . . . . . . . . . 12
| |
| 47 | 46 | 3ad2ant2 1022 |
. . . . . . . . . . 11
|
| 48 | 47 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 49 | 43, 48 | ltsubrpd 9858 |
. . . . . . . . 9
|
| 50 | nngt0 9068 |
. . . . . . . . . . . 12
| |
| 51 | 50 | 3ad2ant2 1022 |
. . . . . . . . . . 11
|
| 52 | 51 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 53 | simp12 1031 |
. . . . . . . . . . . 12
| |
| 54 | 53 | nnred 9056 |
. . . . . . . . . . 11
|
| 55 | 54, 43 | ltaddposd 8609 |
. . . . . . . . . 10
|
| 56 | 52, 55 | mpbid 147 |
. . . . . . . . 9
|
| 57 | 41, 43, 45, 49, 56 | lttrd 8205 |
. . . . . . . 8
|
| 58 | pythagtriplem10 12636 |
. . . . . . . . . . 11
| |
| 59 | 58 | 3adant3 1020 |
. . . . . . . . . 10
|
| 60 | 0re 8079 |
. . . . . . . . . . 11
| |
| 61 | ltle 8167 |
. . . . . . . . . . 11
| |
| 62 | 60, 61 | mpan 424 |
. . . . . . . . . 10
|
| 63 | 41, 59, 62 | sylc 62 |
. . . . . . . . 9
|
| 64 | nngt0 9068 |
. . . . . . . . . . . . 13
| |
| 65 | 64 | 3ad2ant3 1023 |
. . . . . . . . . . . 12
|
| 66 | 65 | 3ad2ant1 1021 |
. . . . . . . . . . 11
|
| 67 | 43, 54, 66, 52 | addgt0d 8601 |
. . . . . . . . . 10
|
| 68 | ltle 8167 |
. . . . . . . . . . 11
| |
| 69 | 60, 68 | mpan 424 |
. . . . . . . . . 10
|
| 70 | 45, 67, 69 | sylc 62 |
. . . . . . . . 9
|
| 71 | 41, 63, 45, 70 | sqrtltd 11527 |
. . . . . . . 8
|
| 72 | 57, 71 | mpbid 147 |
. . . . . . 7
|
| 73 | nnsub 9082 |
. . . . . . . 8
| |
| 74 | 22, 2, 73 | syl2anc 411 |
. . . . . . 7
|
| 75 | 72, 74 | mpbid 147 |
. . . . . 6
|
| 76 | 75 | nnzd 9501 |
. . . . 5
|
| 77 | evend2 12244 |
. . . . 5
| |
| 78 | 76, 77 | syl 14 |
. . . 4
|
| 79 | 39, 78 | mpbid 147 |
. . 3
|
| 80 | 75 | nngt0d 9087 |
. . . 4
|
| 81 | 75 | nnred 9056 |
. . . . 5
|
| 82 | halfpos2 9274 |
. . . . 5
| |
| 83 | 81, 82 | syl 14 |
. . . 4
|
| 84 | 80, 83 | mpbid 147 |
. . 3
|
| 85 | elnnz 9389 |
. . 3
| |
| 86 | 79, 84, 85 | sylanbrc 417 |
. 2
|
| 87 | 1, 86 | eqeltrid 2293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-2o 6510 df-er 6627 df-en 6835 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 df-prm 12474 |
| This theorem is referenced by: pythagtriplem18 12648 |
| Copyright terms: Public domain | W3C validator |