| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem13 | Unicode version | ||
| Description: Lemma for pythagtrip 12792. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem13.1 |
|
| Ref | Expression |
|---|---|
| pythagtriplem13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem13.1 |
. 2
| |
| 2 | pythagtriplem9 12782 |
. . . . . 6
| |
| 3 | 2 | nnzd 9556 |
. . . . 5
|
| 4 | simp3r 1050 |
. . . . . . 7
| |
| 5 | 2z 9462 |
. . . . . . . . . 10
| |
| 6 | simp3 1023 |
. . . . . . . . . . . . 13
| |
| 7 | simp2 1022 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | nnaddcld 9146 |
. . . . . . . . . . . 12
|
| 9 | 8 | nnzd 9556 |
. . . . . . . . . . 11
|
| 10 | 9 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 11 | nnz 9453 |
. . . . . . . . . . . 12
| |
| 12 | 11 | 3ad2ant1 1042 |
. . . . . . . . . . 11
|
| 13 | 12 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 14 | dvdsgcdb 12520 |
. . . . . . . . . 10
| |
| 15 | 5, 10, 13, 14 | mp3an2i 1376 |
. . . . . . . . 9
|
| 16 | 15 | biimpar 297 |
. . . . . . . 8
|
| 17 | 16 | simprd 114 |
. . . . . . 7
|
| 18 | 4, 17 | mtand 669 |
. . . . . 6
|
| 19 | pythagtriplem7 12780 |
. . . . . . 7
| |
| 20 | 19 | breq2d 4094 |
. . . . . 6
|
| 21 | 18, 20 | mtbird 677 |
. . . . 5
|
| 22 | pythagtriplem8 12781 |
. . . . . 6
| |
| 23 | 22 | nnzd 9556 |
. . . . 5
|
| 24 | nnz 9453 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | 3ad2ant3 1044 |
. . . . . . . . . . . 12
|
| 26 | nnz 9453 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | 3ad2ant2 1043 |
. . . . . . . . . . . 12
|
| 28 | 25, 27 | zsubcld 9562 |
. . . . . . . . . . 11
|
| 29 | 28 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 30 | dvdsgcdb 12520 |
. . . . . . . . . 10
| |
| 31 | 5, 29, 13, 30 | mp3an2i 1376 |
. . . . . . . . 9
|
| 32 | 31 | biimpar 297 |
. . . . . . . 8
|
| 33 | 32 | simprd 114 |
. . . . . . 7
|
| 34 | 4, 33 | mtand 669 |
. . . . . 6
|
| 35 | pythagtriplem6 12779 |
. . . . . . 7
| |
| 36 | 35 | breq2d 4094 |
. . . . . 6
|
| 37 | 34, 36 | mtbird 677 |
. . . . 5
|
| 38 | omoe 12393 |
. . . . 5
| |
| 39 | 3, 21, 23, 37, 38 | syl22anc 1272 |
. . . 4
|
| 40 | 28 | zred 9557 |
. . . . . . . . . 10
|
| 41 | 40 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 42 | simp13 1053 |
. . . . . . . . . 10
| |
| 43 | 42 | nnred 9111 |
. . . . . . . . 9
|
| 44 | 8 | nnred 9111 |
. . . . . . . . . 10
|
| 45 | 44 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 46 | nnrp 9847 |
. . . . . . . . . . . 12
| |
| 47 | 46 | 3ad2ant2 1043 |
. . . . . . . . . . 11
|
| 48 | 47 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 49 | 43, 48 | ltsubrpd 9913 |
. . . . . . . . 9
|
| 50 | nngt0 9123 |
. . . . . . . . . . . 12
| |
| 51 | 50 | 3ad2ant2 1043 |
. . . . . . . . . . 11
|
| 52 | 51 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 53 | simp12 1052 |
. . . . . . . . . . . 12
| |
| 54 | 53 | nnred 9111 |
. . . . . . . . . . 11
|
| 55 | 54, 43 | ltaddposd 8664 |
. . . . . . . . . 10
|
| 56 | 52, 55 | mpbid 147 |
. . . . . . . . 9
|
| 57 | 41, 43, 45, 49, 56 | lttrd 8260 |
. . . . . . . 8
|
| 58 | pythagtriplem10 12778 |
. . . . . . . . . . 11
| |
| 59 | 58 | 3adant3 1041 |
. . . . . . . . . 10
|
| 60 | 0re 8134 |
. . . . . . . . . . 11
| |
| 61 | ltle 8222 |
. . . . . . . . . . 11
| |
| 62 | 60, 61 | mpan 424 |
. . . . . . . . . 10
|
| 63 | 41, 59, 62 | sylc 62 |
. . . . . . . . 9
|
| 64 | nngt0 9123 |
. . . . . . . . . . . . 13
| |
| 65 | 64 | 3ad2ant3 1044 |
. . . . . . . . . . . 12
|
| 66 | 65 | 3ad2ant1 1042 |
. . . . . . . . . . 11
|
| 67 | 43, 54, 66, 52 | addgt0d 8656 |
. . . . . . . . . 10
|
| 68 | ltle 8222 |
. . . . . . . . . . 11
| |
| 69 | 60, 68 | mpan 424 |
. . . . . . . . . 10
|
| 70 | 45, 67, 69 | sylc 62 |
. . . . . . . . 9
|
| 71 | 41, 63, 45, 70 | sqrtltd 11669 |
. . . . . . . 8
|
| 72 | 57, 71 | mpbid 147 |
. . . . . . 7
|
| 73 | nnsub 9137 |
. . . . . . . 8
| |
| 74 | 22, 2, 73 | syl2anc 411 |
. . . . . . 7
|
| 75 | 72, 74 | mpbid 147 |
. . . . . 6
|
| 76 | 75 | nnzd 9556 |
. . . . 5
|
| 77 | evend2 12386 |
. . . . 5
| |
| 78 | 76, 77 | syl 14 |
. . . 4
|
| 79 | 39, 78 | mpbid 147 |
. . 3
|
| 80 | 75 | nngt0d 9142 |
. . . 4
|
| 81 | 75 | nnred 9111 |
. . . . 5
|
| 82 | halfpos2 9329 |
. . . . 5
| |
| 83 | 81, 82 | syl 14 |
. . . 4
|
| 84 | 80, 83 | mpbid 147 |
. . 3
|
| 85 | elnnz 9444 |
. . 3
| |
| 86 | 79, 84, 85 | sylanbrc 417 |
. 2
|
| 87 | 1, 86 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-2o 6553 df-er 6670 df-en 6878 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-prm 12616 |
| This theorem is referenced by: pythagtriplem18 12790 |
| Copyright terms: Public domain | W3C validator |