| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffisn | Unicode version | ||
| Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
| Ref | Expression |
|---|---|
| diffisn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6829 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | elex2 2779 |
. . . . . . . . 9
| |
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | fin0 6955 |
. . . . . . . . 9
| |
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | 5, 7 | mpbird 167 |
. . . . . . 7
|
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 9 | neneqd 2388 |
. . . . 5
|
| 11 | simplrr 536 |
. . . . . . 7
| |
| 12 | en0 6863 |
. . . . . . . . 9
| |
| 13 | 12 | biimpri 133 |
. . . . . . . 8
|
| 14 | 13 | adantl 277 |
. . . . . . 7
|
| 15 | entr 6852 |
. . . . . . 7
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | en0 6863 |
. . . . . 6
| |
| 18 | 16, 17 | sylib 122 |
. . . . 5
|
| 19 | 10, 18 | mtand 666 |
. . . 4
|
| 20 | nn0suc 4641 |
. . . . . 6
| |
| 21 | 20 | orcomd 730 |
. . . . 5
|
| 22 | 21 | ad2antrl 490 |
. . . 4
|
| 23 | 19, 22 | ecased 1360 |
. . 3
|
| 24 | nnfi 6942 |
. . . . 5
| |
| 25 | 24 | ad2antrl 490 |
. . . 4
|
| 26 | simprl 529 |
. . . . 5
| |
| 27 | simplrr 536 |
. . . . . 6
| |
| 28 | breq2 4038 |
. . . . . . 7
| |
| 29 | 28 | ad2antll 491 |
. . . . . 6
|
| 30 | 27, 29 | mpbid 147 |
. . . . 5
|
| 31 | simpllr 534 |
. . . . 5
| |
| 32 | dif1en 6949 |
. . . . 5
| |
| 33 | 26, 30, 31, 32 | syl3anc 1249 |
. . . 4
|
| 34 | enfii 6944 |
. . . 4
| |
| 35 | 25, 33, 34 | syl2anc 411 |
. . 3
|
| 36 | 23, 35 | rexlimddv 2619 |
. 2
|
| 37 | 3, 36 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-er 6601 df-en 6809 df-fin 6811 |
| This theorem is referenced by: diffifi 6964 zfz1isolemsplit 10947 zfz1isolem1 10949 fsumdifsnconst 11637 fprodeq0g 11820 |
| Copyright terms: Public domain | W3C validator |