Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diffisn | Unicode version |
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
Ref | Expression |
---|---|
diffisn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6727 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | elex2 2742 | . . . . . . . . 9 | |
5 | 4 | adantl 275 | . . . . . . . 8 |
6 | fin0 6851 | . . . . . . . . 9 | |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | 5, 7 | mpbird 166 | . . . . . . 7 |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 9 | neneqd 2357 | . . . . 5 |
11 | simplrr 526 | . . . . . . 7 | |
12 | en0 6761 | . . . . . . . . 9 | |
13 | 12 | biimpri 132 | . . . . . . . 8 |
14 | 13 | adantl 275 | . . . . . . 7 |
15 | entr 6750 | . . . . . . 7 | |
16 | 11, 14, 15 | syl2anc 409 | . . . . . 6 |
17 | en0 6761 | . . . . . 6 | |
18 | 16, 17 | sylib 121 | . . . . 5 |
19 | 10, 18 | mtand 655 | . . . 4 |
20 | nn0suc 4581 | . . . . . 6 | |
21 | 20 | orcomd 719 | . . . . 5 |
22 | 21 | ad2antrl 482 | . . . 4 |
23 | 19, 22 | ecased 1339 | . . 3 |
24 | nnfi 6838 | . . . . 5 | |
25 | 24 | ad2antrl 482 | . . . 4 |
26 | simprl 521 | . . . . 5 | |
27 | simplrr 526 | . . . . . 6 | |
28 | breq2 3986 | . . . . . . 7 | |
29 | 28 | ad2antll 483 | . . . . . 6 |
30 | 27, 29 | mpbid 146 | . . . . 5 |
31 | simpllr 524 | . . . . 5 | |
32 | dif1en 6845 | . . . . 5 | |
33 | 26, 30, 31, 32 | syl3anc 1228 | . . . 4 |
34 | enfii 6840 | . . . 4 | |
35 | 25, 33, 34 | syl2anc 409 | . . 3 |
36 | 23, 35 | rexlimddv 2588 | . 2 |
37 | 3, 36 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wex 1480 wcel 2136 wne 2336 wrex 2445 cdif 3113 c0 3409 csn 3576 class class class wbr 3982 csuc 4343 com 4567 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: diffifi 6860 zfz1isolemsplit 10751 zfz1isolem1 10753 fsumdifsnconst 11396 fprodeq0g 11579 |
Copyright terms: Public domain | W3C validator |