ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn Unicode version

Theorem diffisn 6936
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )

Proof of Theorem diffisn
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6802 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 276 . 2  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. n  e.  om  A  ~~  n )
4 elex2 2772 . . . . . . . . 9  |-  ( B  e.  A  ->  E. x  x  e.  A )
54adantl 277 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. x  x  e.  A )
6 fin0 6928 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
76adantr 276 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
85, 7mpbird 167 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  A  =/=  (/) )
98adantr 276 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  =/=  (/) )
109neneqd 2381 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  A  =  (/) )
11 simplrr 536 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
12 en0 6836 . . . . . . . . 9  |-  ( n 
~~  (/)  <->  n  =  (/) )
1312biimpri 133 . . . . . . . 8  |-  ( n  =  (/)  ->  n  ~~  (/) )
1413adantl 277 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  ~~  (/) )
15 entr 6825 . . . . . . 7  |-  ( ( A  ~~  n  /\  n  ~~  (/) )  ->  A  ~~  (/) )
1611, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
17 en0 6836 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
1816, 17sylib 122 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
1910, 18mtand 666 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  n  =  (/) )
20 nn0suc 4628 . . . . . 6  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
2120orcomd 730 . . . . 5  |-  ( n  e.  om  ->  ( E. m  e.  om  n  =  suc  m  \/  n  =  (/) ) )
2221ad2antrl 490 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  \/  n  =  (/) ) )
2319, 22ecased 1360 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  n  =  suc  m )
24 nnfi 6915 . . . . 5  |-  ( m  e.  om  ->  m  e.  Fin )
2524ad2antrl 490 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  Fin )
26 simprl 529 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  om )
27 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  n )
28 breq2 4029 . . . . . . 7  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2928ad2antll 491 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
3027, 29mpbid 147 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  suc  m )
31 simpllr 534 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  B  e.  A )
32 dif1en 6922 . . . . 5  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  B  e.  A )  ->  ( A  \  { B } )  ~~  m
)
3326, 30, 31, 32syl3anc 1249 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  ~~  m
)
34 enfii 6917 . . . 4  |-  ( ( m  e.  Fin  /\  ( A  \  { B } )  ~~  m
)  ->  ( A  \  { B } )  e.  Fin )
3525, 33, 34syl2anc 411 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  e.  Fin )
3623, 35rexlimddv 2612 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  \  { B } )  e.  Fin )
373, 36rexlimddv 2612 1  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2160    =/= wne 2360   E.wrex 2469    \ cdif 3146   (/)c0 3442   {csn 3614   class class class wbr 4025   suc csuc 4390   omcom 4614    ~~ cen 6779   Fincfn 6781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-if 3554  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-iord 4391  df-on 4393  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-er 6574  df-en 6782  df-fin 6784
This theorem is referenced by:  diffifi  6937  zfz1isolemsplit  10883  zfz1isolem1  10885  fsumdifsnconst  11572  fprodeq0g  11755
  Copyright terms: Public domain W3C validator