| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffisn | Unicode version | ||
| Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
| Ref | Expression |
|---|---|
| diffisn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6870 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | elex2 2790 |
. . . . . . . . 9
| |
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | fin0 7003 |
. . . . . . . . 9
| |
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | 5, 7 | mpbird 167 |
. . . . . . 7
|
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 9 | neneqd 2398 |
. . . . 5
|
| 11 | simplrr 536 |
. . . . . . 7
| |
| 12 | en0 6905 |
. . . . . . . . 9
| |
| 13 | 12 | biimpri 133 |
. . . . . . . 8
|
| 14 | 13 | adantl 277 |
. . . . . . 7
|
| 15 | entr 6894 |
. . . . . . 7
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | en0 6905 |
. . . . . 6
| |
| 18 | 16, 17 | sylib 122 |
. . . . 5
|
| 19 | 10, 18 | mtand 667 |
. . . 4
|
| 20 | nn0suc 4665 |
. . . . . 6
| |
| 21 | 20 | orcomd 731 |
. . . . 5
|
| 22 | 21 | ad2antrl 490 |
. . . 4
|
| 23 | 19, 22 | ecased 1362 |
. . 3
|
| 24 | nnfi 6990 |
. . . . 5
| |
| 25 | 24 | ad2antrl 490 |
. . . 4
|
| 26 | simprl 529 |
. . . . 5
| |
| 27 | simplrr 536 |
. . . . . 6
| |
| 28 | breq2 4058 |
. . . . . . 7
| |
| 29 | 28 | ad2antll 491 |
. . . . . 6
|
| 30 | 27, 29 | mpbid 147 |
. . . . 5
|
| 31 | simpllr 534 |
. . . . 5
| |
| 32 | dif1en 6997 |
. . . . 5
| |
| 33 | 26, 30, 31, 32 | syl3anc 1250 |
. . . 4
|
| 34 | enfii 6992 |
. . . 4
| |
| 35 | 25, 33, 34 | syl2anc 411 |
. . 3
|
| 36 | 23, 35 | rexlimddv 2629 |
. 2
|
| 37 | 3, 36 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-er 6638 df-en 6846 df-fin 6848 |
| This theorem is referenced by: diffifi 7012 zfz1isolemsplit 11015 zfz1isolem1 11017 fsumdifsnconst 11851 fprodeq0g 12034 |
| Copyright terms: Public domain | W3C validator |