| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffisn | Unicode version | ||
| Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
| Ref | Expression |
|---|---|
| diffisn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6910 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | elex2 2816 |
. . . . . . . . 9
| |
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | fin0 7043 |
. . . . . . . . 9
| |
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | 5, 7 | mpbird 167 |
. . . . . . 7
|
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 9 | neneqd 2421 |
. . . . 5
|
| 11 | simplrr 536 |
. . . . . . 7
| |
| 12 | en0 6945 |
. . . . . . . . 9
| |
| 13 | 12 | biimpri 133 |
. . . . . . . 8
|
| 14 | 13 | adantl 277 |
. . . . . . 7
|
| 15 | entr 6934 |
. . . . . . 7
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | en0 6945 |
. . . . . 6
| |
| 18 | 16, 17 | sylib 122 |
. . . . 5
|
| 19 | 10, 18 | mtand 669 |
. . . 4
|
| 20 | nn0suc 4695 |
. . . . . 6
| |
| 21 | 20 | orcomd 734 |
. . . . 5
|
| 22 | 21 | ad2antrl 490 |
. . . 4
|
| 23 | 19, 22 | ecased 1383 |
. . 3
|
| 24 | nnfi 7030 |
. . . . 5
| |
| 25 | 24 | ad2antrl 490 |
. . . 4
|
| 26 | simprl 529 |
. . . . 5
| |
| 27 | simplrr 536 |
. . . . . 6
| |
| 28 | breq2 4086 |
. . . . . . 7
| |
| 29 | 28 | ad2antll 491 |
. . . . . 6
|
| 30 | 27, 29 | mpbid 147 |
. . . . 5
|
| 31 | simpllr 534 |
. . . . 5
| |
| 32 | dif1en 7037 |
. . . . 5
| |
| 33 | 26, 30, 31, 32 | syl3anc 1271 |
. . . 4
|
| 34 | enfii 7032 |
. . . 4
| |
| 35 | 25, 33, 34 | syl2anc 411 |
. . 3
|
| 36 | 23, 35 | rexlimddv 2653 |
. 2
|
| 37 | 3, 36 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: diffifi 7052 zfz1isolemsplit 11055 zfz1isolem1 11057 fsumdifsnconst 11961 fprodeq0g 12144 |
| Copyright terms: Public domain | W3C validator |