Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diffisn | Unicode version |
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
Ref | Expression |
---|---|
diffisn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6739 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | elex2 2746 | . . . . . . . . 9 | |
5 | 4 | adantl 275 | . . . . . . . 8 |
6 | fin0 6863 | . . . . . . . . 9 | |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | 5, 7 | mpbird 166 | . . . . . . 7 |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 9 | neneqd 2361 | . . . . 5 |
11 | simplrr 531 | . . . . . . 7 | |
12 | en0 6773 | . . . . . . . . 9 | |
13 | 12 | biimpri 132 | . . . . . . . 8 |
14 | 13 | adantl 275 | . . . . . . 7 |
15 | entr 6762 | . . . . . . 7 | |
16 | 11, 14, 15 | syl2anc 409 | . . . . . 6 |
17 | en0 6773 | . . . . . 6 | |
18 | 16, 17 | sylib 121 | . . . . 5 |
19 | 10, 18 | mtand 660 | . . . 4 |
20 | nn0suc 4588 | . . . . . 6 | |
21 | 20 | orcomd 724 | . . . . 5 |
22 | 21 | ad2antrl 487 | . . . 4 |
23 | 19, 22 | ecased 1344 | . . 3 |
24 | nnfi 6850 | . . . . 5 | |
25 | 24 | ad2antrl 487 | . . . 4 |
26 | simprl 526 | . . . . 5 | |
27 | simplrr 531 | . . . . . 6 | |
28 | breq2 3993 | . . . . . . 7 | |
29 | 28 | ad2antll 488 | . . . . . 6 |
30 | 27, 29 | mpbid 146 | . . . . 5 |
31 | simpllr 529 | . . . . 5 | |
32 | dif1en 6857 | . . . . 5 | |
33 | 26, 30, 31, 32 | syl3anc 1233 | . . . 4 |
34 | enfii 6852 | . . . 4 | |
35 | 25, 33, 34 | syl2anc 409 | . . 3 |
36 | 23, 35 | rexlimddv 2592 | . 2 |
37 | 3, 36 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wne 2340 wrex 2449 cdif 3118 c0 3414 csn 3583 class class class wbr 3989 csuc 4350 com 4574 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: diffifi 6872 zfz1isolemsplit 10773 zfz1isolem1 10775 fsumdifsnconst 11418 fprodeq0g 11601 |
Copyright terms: Public domain | W3C validator |