Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diffisn | Unicode version |
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
Ref | Expression |
---|---|
diffisn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6735 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | elex2 2746 | . . . . . . . . 9 | |
5 | 4 | adantl 275 | . . . . . . . 8 |
6 | fin0 6859 | . . . . . . . . 9 | |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | 5, 7 | mpbird 166 | . . . . . . 7 |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 9 | neneqd 2361 | . . . . 5 |
11 | simplrr 531 | . . . . . . 7 | |
12 | en0 6769 | . . . . . . . . 9 | |
13 | 12 | biimpri 132 | . . . . . . . 8 |
14 | 13 | adantl 275 | . . . . . . 7 |
15 | entr 6758 | . . . . . . 7 | |
16 | 11, 14, 15 | syl2anc 409 | . . . . . 6 |
17 | en0 6769 | . . . . . 6 | |
18 | 16, 17 | sylib 121 | . . . . 5 |
19 | 10, 18 | mtand 660 | . . . 4 |
20 | nn0suc 4586 | . . . . . 6 | |
21 | 20 | orcomd 724 | . . . . 5 |
22 | 21 | ad2antrl 487 | . . . 4 |
23 | 19, 22 | ecased 1344 | . . 3 |
24 | nnfi 6846 | . . . . 5 | |
25 | 24 | ad2antrl 487 | . . . 4 |
26 | simprl 526 | . . . . 5 | |
27 | simplrr 531 | . . . . . 6 | |
28 | breq2 3991 | . . . . . . 7 | |
29 | 28 | ad2antll 488 | . . . . . 6 |
30 | 27, 29 | mpbid 146 | . . . . 5 |
31 | simpllr 529 | . . . . 5 | |
32 | dif1en 6853 | . . . . 5 | |
33 | 26, 30, 31, 32 | syl3anc 1233 | . . . 4 |
34 | enfii 6848 | . . . 4 | |
35 | 25, 33, 34 | syl2anc 409 | . . 3 |
36 | 23, 35 | rexlimddv 2592 | . 2 |
37 | 3, 36 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wne 2340 wrex 2449 cdif 3118 c0 3414 csn 3581 class class class wbr 3987 csuc 4348 com 4572 cen 6712 cfn 6714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-er 6509 df-en 6715 df-fin 6717 |
This theorem is referenced by: diffifi 6868 zfz1isolemsplit 10760 zfz1isolem1 10762 fsumdifsnconst 11405 fprodeq0g 11588 |
Copyright terms: Public domain | W3C validator |