ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn Unicode version

Theorem diffisn 6787
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )

Proof of Theorem diffisn
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6655 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 274 . 2  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. n  e.  om  A  ~~  n )
4 elex2 2702 . . . . . . . . 9  |-  ( B  e.  A  ->  E. x  x  e.  A )
54adantl 275 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. x  x  e.  A )
6 fin0 6779 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
76adantr 274 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
85, 7mpbird 166 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  A  =/=  (/) )
98adantr 274 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  =/=  (/) )
109neneqd 2329 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  A  =  (/) )
11 simplrr 525 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
12 en0 6689 . . . . . . . . 9  |-  ( n 
~~  (/)  <->  n  =  (/) )
1312biimpri 132 . . . . . . . 8  |-  ( n  =  (/)  ->  n  ~~  (/) )
1413adantl 275 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  ~~  (/) )
15 entr 6678 . . . . . . 7  |-  ( ( A  ~~  n  /\  n  ~~  (/) )  ->  A  ~~  (/) )
1611, 14, 15syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
17 en0 6689 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
1816, 17sylib 121 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
1910, 18mtand 654 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  n  =  (/) )
20 nn0suc 4518 . . . . . 6  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
2120orcomd 718 . . . . 5  |-  ( n  e.  om  ->  ( E. m  e.  om  n  =  suc  m  \/  n  =  (/) ) )
2221ad2antrl 481 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  \/  n  =  (/) ) )
2319, 22ecased 1327 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  n  =  suc  m )
24 nnfi 6766 . . . . 5  |-  ( m  e.  om  ->  m  e.  Fin )
2524ad2antrl 481 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  Fin )
26 simprl 520 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  om )
27 simplrr 525 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  n )
28 breq2 3933 . . . . . . 7  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2928ad2antll 482 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
3027, 29mpbid 146 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  suc  m )
31 simpllr 523 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  B  e.  A )
32 dif1en 6773 . . . . 5  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  B  e.  A )  ->  ( A  \  { B } )  ~~  m
)
3326, 30, 31, 32syl3anc 1216 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  ~~  m
)
34 enfii 6768 . . . 4  |-  ( ( m  e.  Fin  /\  ( A  \  { B } )  ~~  m
)  ->  ( A  \  { B } )  e.  Fin )
3525, 33, 34syl2anc 408 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  e.  Fin )
3623, 35rexlimddv 2554 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  \  { B } )  e.  Fin )
373, 36rexlimddv 2554 1  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   E.wex 1468    e. wcel 1480    =/= wne 2308   E.wrex 2417    \ cdif 3068   (/)c0 3363   {csn 3527   class class class wbr 3929   suc csuc 4287   omcom 4504    ~~ cen 6632   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  diffifi  6788  zfz1isolemsplit  10581  zfz1isolem1  10583  fsumdifsnconst  11224
  Copyright terms: Public domain W3C validator