Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phpm | Unicode version |
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6828 through phplem4 6831, nneneq 6833, and this final piece of the proof. (Contributed by NM, 29-May-1998.) |
Ref | Expression |
---|---|
phpm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | eldifi 3249 | . . . . . . . . 9 | |
3 | ne0i 3420 | . . . . . . . . 9 | |
4 | 2, 3 | syl 14 | . . . . . . . 8 |
5 | 4 | neneqd 2361 | . . . . . . 7 |
6 | 5 | ad2antlr 486 | . . . . . 6 |
7 | 1, 6 | pm2.21dd 615 | . . . . 5 |
8 | php5dom 6839 | . . . . . . . . . 10 | |
9 | 8 | ad2antlr 486 | . . . . . . . . 9 |
10 | simplr 525 | . . . . . . . . . 10 | |
11 | simpr 109 | . . . . . . . . . . 11 | |
12 | vex 2733 | . . . . . . . . . . . . . . . 16 | |
13 | 12 | sucex 4481 | . . . . . . . . . . . . . . 15 |
14 | difss 3253 | . . . . . . . . . . . . . . 15 | |
15 | 13, 14 | ssexi 4125 | . . . . . . . . . . . . . 14 |
16 | eldifn 3250 | . . . . . . . . . . . . . . . 16 | |
17 | 16 | ad3antlr 490 | . . . . . . . . . . . . . . 15 |
18 | simpllr 529 | . . . . . . . . . . . . . . . . 17 | |
19 | 18 | adantr 274 | . . . . . . . . . . . . . . . 16 |
20 | simpr 109 | . . . . . . . . . . . . . . . 16 | |
21 | 19, 20 | sseqtrd 3185 | . . . . . . . . . . . . . . 15 |
22 | ssdif 3262 | . . . . . . . . . . . . . . . 16 | |
23 | disjsn 3643 | . . . . . . . . . . . . . . . . . 18 | |
24 | disj3 3466 | . . . . . . . . . . . . . . . . . 18 | |
25 | 23, 24 | bitr3i 185 | . . . . . . . . . . . . . . . . 17 |
26 | sseq1 3170 | . . . . . . . . . . . . . . . . 17 | |
27 | 25, 26 | sylbi 120 | . . . . . . . . . . . . . . . 16 |
28 | 22, 27 | syl5ibr 155 | . . . . . . . . . . . . . . 15 |
29 | 17, 21, 28 | sylc 62 | . . . . . . . . . . . . . 14 |
30 | ssdomg 6754 | . . . . . . . . . . . . . 14 | |
31 | 15, 29, 30 | mpsyl 65 | . . . . . . . . . . . . 13 |
32 | simplr 525 | . . . . . . . . . . . . . 14 | |
33 | 2 | ad3antlr 490 | . . . . . . . . . . . . . . 15 |
34 | 33, 20 | eleqtrd 2249 | . . . . . . . . . . . . . 14 |
35 | phplem3g 6832 | . . . . . . . . . . . . . . 15 | |
36 | 35 | ensymd 6759 | . . . . . . . . . . . . . 14 |
37 | 32, 34, 36 | syl2anc 409 | . . . . . . . . . . . . 13 |
38 | domentr 6767 | . . . . . . . . . . . . 13 | |
39 | 31, 37, 38 | syl2anc 409 | . . . . . . . . . . . 12 |
40 | 39 | adantr 274 | . . . . . . . . . . 11 |
41 | endomtr 6766 | . . . . . . . . . . 11 | |
42 | 11, 40, 41 | syl2anc 409 | . . . . . . . . . 10 |
43 | 10, 42 | eqbrtrrd 4011 | . . . . . . . . 9 |
44 | 9, 43 | mtand 660 | . . . . . . . 8 |
45 | 44 | ex 114 | . . . . . . 7 |
46 | 45 | rexlimdva 2587 | . . . . . 6 |
47 | 46 | imp 123 | . . . . 5 |
48 | nn0suc 4586 | . . . . . 6 | |
49 | 48 | ad2antrr 485 | . . . . 5 |
50 | 7, 47, 49 | mpjaodan 793 | . . . 4 |
51 | 50 | ex 114 | . . 3 |
52 | 51 | exlimdv 1812 | . 2 |
53 | 52 | 3impia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wex 1485 wcel 2141 wne 2340 wrex 2449 cvv 2730 cdif 3118 cin 3120 wss 3121 c0 3414 csn 3581 class class class wbr 3987 csuc 4348 com 4572 cen 6714 cdom 6715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-er 6511 df-en 6717 df-dom 6718 |
This theorem is referenced by: phpelm 6842 |
Copyright terms: Public domain | W3C validator |