Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phpm | Unicode version |
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6830 through phplem4 6833, nneneq 6835, and this final piece of the proof. (Contributed by NM, 29-May-1998.) |
Ref | Expression |
---|---|
phpm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | eldifi 3249 | . . . . . . . . 9 | |
3 | ne0i 3421 | . . . . . . . . 9 | |
4 | 2, 3 | syl 14 | . . . . . . . 8 |
5 | 4 | neneqd 2361 | . . . . . . 7 |
6 | 5 | ad2antlr 486 | . . . . . 6 |
7 | 1, 6 | pm2.21dd 615 | . . . . 5 |
8 | php5dom 6841 | . . . . . . . . . 10 | |
9 | 8 | ad2antlr 486 | . . . . . . . . 9 |
10 | simplr 525 | . . . . . . . . . 10 | |
11 | simpr 109 | . . . . . . . . . . 11 | |
12 | vex 2733 | . . . . . . . . . . . . . . . 16 | |
13 | 12 | sucex 4483 | . . . . . . . . . . . . . . 15 |
14 | difss 3253 | . . . . . . . . . . . . . . 15 | |
15 | 13, 14 | ssexi 4127 | . . . . . . . . . . . . . 14 |
16 | eldifn 3250 | . . . . . . . . . . . . . . . 16 | |
17 | 16 | ad3antlr 490 | . . . . . . . . . . . . . . 15 |
18 | simpllr 529 | . . . . . . . . . . . . . . . . 17 | |
19 | 18 | adantr 274 | . . . . . . . . . . . . . . . 16 |
20 | simpr 109 | . . . . . . . . . . . . . . . 16 | |
21 | 19, 20 | sseqtrd 3185 | . . . . . . . . . . . . . . 15 |
22 | ssdif 3262 | . . . . . . . . . . . . . . . 16 | |
23 | disjsn 3645 | . . . . . . . . . . . . . . . . . 18 | |
24 | disj3 3467 | . . . . . . . . . . . . . . . . . 18 | |
25 | 23, 24 | bitr3i 185 | . . . . . . . . . . . . . . . . 17 |
26 | sseq1 3170 | . . . . . . . . . . . . . . . . 17 | |
27 | 25, 26 | sylbi 120 | . . . . . . . . . . . . . . . 16 |
28 | 22, 27 | syl5ibr 155 | . . . . . . . . . . . . . . 15 |
29 | 17, 21, 28 | sylc 62 | . . . . . . . . . . . . . 14 |
30 | ssdomg 6756 | . . . . . . . . . . . . . 14 | |
31 | 15, 29, 30 | mpsyl 65 | . . . . . . . . . . . . 13 |
32 | simplr 525 | . . . . . . . . . . . . . 14 | |
33 | 2 | ad3antlr 490 | . . . . . . . . . . . . . . 15 |
34 | 33, 20 | eleqtrd 2249 | . . . . . . . . . . . . . 14 |
35 | phplem3g 6834 | . . . . . . . . . . . . . . 15 | |
36 | 35 | ensymd 6761 | . . . . . . . . . . . . . 14 |
37 | 32, 34, 36 | syl2anc 409 | . . . . . . . . . . . . 13 |
38 | domentr 6769 | . . . . . . . . . . . . 13 | |
39 | 31, 37, 38 | syl2anc 409 | . . . . . . . . . . . 12 |
40 | 39 | adantr 274 | . . . . . . . . . . 11 |
41 | endomtr 6768 | . . . . . . . . . . 11 | |
42 | 11, 40, 41 | syl2anc 409 | . . . . . . . . . 10 |
43 | 10, 42 | eqbrtrrd 4013 | . . . . . . . . 9 |
44 | 9, 43 | mtand 660 | . . . . . . . 8 |
45 | 44 | ex 114 | . . . . . . 7 |
46 | 45 | rexlimdva 2587 | . . . . . 6 |
47 | 46 | imp 123 | . . . . 5 |
48 | nn0suc 4588 | . . . . . 6 | |
49 | 48 | ad2antrr 485 | . . . . 5 |
50 | 7, 47, 49 | mpjaodan 793 | . . . 4 |
51 | 50 | ex 114 | . . 3 |
52 | 51 | exlimdv 1812 | . 2 |
53 | 52 | 3impia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wex 1485 wcel 2141 wne 2340 wrex 2449 cvv 2730 cdif 3118 cin 3120 wss 3121 c0 3414 csn 3583 class class class wbr 3989 csuc 4350 com 4574 cen 6716 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 |
This theorem is referenced by: phpelm 6844 |
Copyright terms: Public domain | W3C validator |