Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phpm | Unicode version |
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6818 through phplem4 6821, nneneq 6823, and this final piece of the proof. (Contributed by NM, 29-May-1998.) |
Ref | Expression |
---|---|
phpm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | eldifi 3244 | . . . . . . . . 9 | |
3 | ne0i 3415 | . . . . . . . . 9 | |
4 | 2, 3 | syl 14 | . . . . . . . 8 |
5 | 4 | neneqd 2357 | . . . . . . 7 |
6 | 5 | ad2antlr 481 | . . . . . 6 |
7 | 1, 6 | pm2.21dd 610 | . . . . 5 |
8 | php5dom 6829 | . . . . . . . . . 10 | |
9 | 8 | ad2antlr 481 | . . . . . . . . 9 |
10 | simplr 520 | . . . . . . . . . 10 | |
11 | simpr 109 | . . . . . . . . . . 11 | |
12 | vex 2729 | . . . . . . . . . . . . . . . 16 | |
13 | 12 | sucex 4476 | . . . . . . . . . . . . . . 15 |
14 | difss 3248 | . . . . . . . . . . . . . . 15 | |
15 | 13, 14 | ssexi 4120 | . . . . . . . . . . . . . 14 |
16 | eldifn 3245 | . . . . . . . . . . . . . . . 16 | |
17 | 16 | ad3antlr 485 | . . . . . . . . . . . . . . 15 |
18 | simpllr 524 | . . . . . . . . . . . . . . . . 17 | |
19 | 18 | adantr 274 | . . . . . . . . . . . . . . . 16 |
20 | simpr 109 | . . . . . . . . . . . . . . . 16 | |
21 | 19, 20 | sseqtrd 3180 | . . . . . . . . . . . . . . 15 |
22 | ssdif 3257 | . . . . . . . . . . . . . . . 16 | |
23 | disjsn 3638 | . . . . . . . . . . . . . . . . . 18 | |
24 | disj3 3461 | . . . . . . . . . . . . . . . . . 18 | |
25 | 23, 24 | bitr3i 185 | . . . . . . . . . . . . . . . . 17 |
26 | sseq1 3165 | . . . . . . . . . . . . . . . . 17 | |
27 | 25, 26 | sylbi 120 | . . . . . . . . . . . . . . . 16 |
28 | 22, 27 | syl5ibr 155 | . . . . . . . . . . . . . . 15 |
29 | 17, 21, 28 | sylc 62 | . . . . . . . . . . . . . 14 |
30 | ssdomg 6744 | . . . . . . . . . . . . . 14 | |
31 | 15, 29, 30 | mpsyl 65 | . . . . . . . . . . . . 13 |
32 | simplr 520 | . . . . . . . . . . . . . 14 | |
33 | 2 | ad3antlr 485 | . . . . . . . . . . . . . . 15 |
34 | 33, 20 | eleqtrd 2245 | . . . . . . . . . . . . . 14 |
35 | phplem3g 6822 | . . . . . . . . . . . . . . 15 | |
36 | 35 | ensymd 6749 | . . . . . . . . . . . . . 14 |
37 | 32, 34, 36 | syl2anc 409 | . . . . . . . . . . . . 13 |
38 | domentr 6757 | . . . . . . . . . . . . 13 | |
39 | 31, 37, 38 | syl2anc 409 | . . . . . . . . . . . 12 |
40 | 39 | adantr 274 | . . . . . . . . . . 11 |
41 | endomtr 6756 | . . . . . . . . . . 11 | |
42 | 11, 40, 41 | syl2anc 409 | . . . . . . . . . 10 |
43 | 10, 42 | eqbrtrrd 4006 | . . . . . . . . 9 |
44 | 9, 43 | mtand 655 | . . . . . . . 8 |
45 | 44 | ex 114 | . . . . . . 7 |
46 | 45 | rexlimdva 2583 | . . . . . 6 |
47 | 46 | imp 123 | . . . . 5 |
48 | nn0suc 4581 | . . . . . 6 | |
49 | 48 | ad2antrr 480 | . . . . 5 |
50 | 7, 47, 49 | mpjaodan 788 | . . . 4 |
51 | 50 | ex 114 | . . 3 |
52 | 51 | exlimdv 1807 | . 2 |
53 | 52 | 3impia 1190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wex 1480 wcel 2136 wne 2336 wrex 2445 cvv 2726 cdif 3113 cin 3115 wss 3116 c0 3409 csn 3576 class class class wbr 3982 csuc 4343 com 4567 cen 6704 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-dom 6708 |
This theorem is referenced by: phpelm 6832 |
Copyright terms: Public domain | W3C validator |