ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssvancl1 Unicode version

Theorem lssvancl1 14162
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v  |-  V  =  ( Base `  W
)
lssvancl.p  |-  .+  =  ( +g  `  W )
lssvancl.s  |-  S  =  ( LSubSp `  W )
lssvancl.w  |-  ( ph  ->  W  e.  LMod )
lssvancl.u  |-  ( ph  ->  U  e.  S )
lssvancl.x  |-  ( ph  ->  X  e.  U )
lssvancl.y  |-  ( ph  ->  Y  e.  V )
lssvancl.n  |-  ( ph  ->  -.  Y  e.  U
)
Assertion
Ref Expression
lssvancl1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2  |-  ( ph  ->  -.  Y  e.  U
)
2 lssvancl.w . . . . . 6  |-  ( ph  ->  W  e.  LMod )
3 lmodabl 14129 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Abel )
42, 3syl 14 . . . . 5  |-  ( ph  ->  W  e.  Abel )
5 lssvancl.u . . . . . 6  |-  ( ph  ->  U  e.  S )
6 lssvancl.x . . . . . 6  |-  ( ph  ->  X  e.  U )
7 lssvancl.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 lssvancl.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8lsselg 14156 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
102, 5, 6, 9syl3anc 1250 . . . . 5  |-  ( ph  ->  X  e.  V )
11 lssvancl.y . . . . 5  |-  ( ph  ->  Y  e.  V )
12 lssvancl.p . . . . . 6  |-  .+  =  ( +g  `  W )
13 eqid 2205 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
147, 12, 13ablpncan2 13685 . . . . 5  |-  ( ( W  e.  Abel  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
) ( -g `  W
) X )  =  Y )
154, 10, 11, 14syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  =  Y )
1615adantr 276 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  =  Y )
172adantr 276 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  W  e.  LMod )
185adantr 276 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  U  e.  S )
19 simpr 110 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( X  .+  Y )  e.  U
)
206adantr 276 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  X  e.  U )
2113, 8lssvsubcl 14161 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( ( X 
.+  Y )  e.  U  /\  X  e.  U ) )  -> 
( ( X  .+  Y ) ( -g `  W ) X )  e.  U )
2217, 18, 19, 20, 21syl22anc 1251 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  e.  U
)
2316, 22eqeltrrd 2283 . 2  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  Y  e.  U )
241, 23mtand 667 1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   -gcsg 13367   Abelcabl 13654   LModclmod 14082   LSubSpclss 14147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-sca 12958  df-vsca 12959  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-cmn 13655  df-abl 13656  df-mgp 13716  df-ur 13755  df-ring 13793  df-lmod 14084  df-lssm 14148
This theorem is referenced by:  lssvancl2  14163
  Copyright terms: Public domain W3C validator