ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulm1d Unicode version

Theorem mulm1d 8434
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mulm1d  |-  ( ph  ->  ( -u 1  x.  A )  =  -u A )

Proof of Theorem mulm1d
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulm1 8424 . 2  |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
31, 2syl 14 1  |-  ( ph  ->  ( -u 1  x.  A )  =  -u A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7875   1c1 7878    x. cmul 7882   -ucneg 8196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7969  ax-1cn 7970  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8197  df-neg 8198
This theorem is referenced by:  mulreim  8628  recextlem1  8675  ofnegsub  8986  modqnegd  10456  modsumfzodifsn  10473  m1expcl2  10638  remullem  11021  fsumneg  11600  efi4p  11866  cosadd  11886  absefib  11920  efieq1re  11921  pythagtriplem4  12413  dvmptnegcn  14934  sin0pilem1  14990  cosq34lt1  15059  lgsdir2lem4  15239  gausslemma2dlem5a  15273  lgseisenlem1  15278  lgseisenlem2  15279
  Copyright terms: Public domain W3C validator