| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulm1d | Unicode version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 |
|
| Ref | Expression |
|---|---|
| mulm1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 |
. 2
| |
| 2 | mulm1 8445 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-neg 8219 |
| This theorem is referenced by: mulreim 8650 recextlem1 8697 ofnegsub 9008 modqnegd 10490 modsumfzodifsn 10507 m1expcl2 10672 remullem 11055 fsumneg 11635 efi4p 11901 cosadd 11921 absefib 11955 efieq1re 11956 bitsinv1lem 12145 pythagtriplem4 12464 dvmptnegcn 15044 sin0pilem1 15103 cosq34lt1 15172 lgsdir2lem4 15358 gausslemma2dlem5a 15392 lgseisenlem1 15397 lgseisenlem2 15398 |
| Copyright terms: Public domain | W3C validator |