ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdi GIF version

Theorem muladdi 8328
Description: Product of two sums. (Contributed by NM, 17-May-1999.)
Hypotheses
Ref Expression
mulm1.1 𝐴 ∈ ℂ
mulneg.2 𝐵 ∈ ℂ
subdi.3 𝐶 ∈ ℂ
muladdi.4 𝐷 ∈ ℂ
Assertion
Ref Expression
muladdi ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))

Proof of Theorem muladdi
StepHypRef Expression
1 mulm1.1 . 2 𝐴 ∈ ℂ
2 mulneg.2 . 2 𝐵 ∈ ℂ
3 subdi.3 . 2 𝐶 ∈ ℂ
4 muladdi.4 . 2 𝐷 ∈ ℂ
5 muladd 8303 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
61, 2, 3, 4, 5mp4an 425 1 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772   + caddc 7777   · cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-addcl 7870  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-distr 7878
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator