| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > muladdi | GIF version | ||
| Description: Product of two sums. (Contributed by NM, 17-May-1999.) |
| Ref | Expression |
|---|---|
| mulm1.1 | ⊢ 𝐴 ∈ ℂ |
| mulneg.2 | ⊢ 𝐵 ∈ ℂ |
| subdi.3 | ⊢ 𝐶 ∈ ℂ |
| muladdi.4 | ⊢ 𝐷 ∈ ℂ |
| Ref | Expression |
|---|---|
| muladdi | ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulneg.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | subdi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | muladdi.4 | . 2 ⊢ 𝐷 ∈ ℂ | |
| 5 | muladd 8427 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | |
| 6 | 1, 2, 3, 4, 5 | mp4an 427 | 1 ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-addcl 7992 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-distr 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: karatsuba 12624 |
| Copyright terms: Public domain | W3C validator |