ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune Unicode version

Theorem djune 7137
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)

Proof of Theorem djune
StepHypRef Expression
1 1n0 6485 . . . . 5  |-  1o  =/=  (/)
21nesymi 2410 . . . 4  |-  -.  (/)  =  1o
3 1stinl 7133 . . . . 5  |-  ( A  e.  V  ->  ( 1st `  (inl `  A
) )  =  (/) )
4 1stinr 7135 . . . . 5  |-  ( B  e.  W  ->  ( 1st `  (inr `  B
) )  =  1o )
53, 4eqeqan12d 2209 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) )  <->  (/)  =  1o ) )
62, 5mtbiri 676 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
7 fveq2 5554 . . 3  |-  ( (inl
`  A )  =  (inr `  B )  ->  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
86, 7nsyl 629 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  (inl `  A
)  =  (inr `  B ) )
98neqned 2371 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3446   ` cfv 5254   1stc1st 6191   1oc1o 6462  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-1st 6193  df-1o 6469  df-inl 7106  df-inr 7107
This theorem is referenced by:  omp1eomlem  7153  difinfsnlem  7158  difinfsn  7159  fodjuomnilemdc  7203  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263
  Copyright terms: Public domain W3C validator