ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune Unicode version

Theorem djune 7245
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)

Proof of Theorem djune
StepHypRef Expression
1 1n0 6578 . . . . 5  |-  1o  =/=  (/)
21nesymi 2446 . . . 4  |-  -.  (/)  =  1o
3 1stinl 7241 . . . . 5  |-  ( A  e.  V  ->  ( 1st `  (inl `  A
) )  =  (/) )
4 1stinr 7243 . . . . 5  |-  ( B  e.  W  ->  ( 1st `  (inr `  B
) )  =  1o )
53, 4eqeqan12d 2245 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) )  <->  (/)  =  1o ) )
62, 5mtbiri 679 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
7 fveq2 5627 . . 3  |-  ( (inl
`  A )  =  (inr `  B )  ->  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
86, 7nsyl 631 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  (inl `  A
)  =  (inr `  B ) )
98neqned 2407 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   ` cfv 5318   1stc1st 6284   1oc1o 6555  inlcinl 7212  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6286  df-1o 6562  df-inl 7214  df-inr 7215
This theorem is referenced by:  omp1eomlem  7261  difinfsnlem  7266  difinfsn  7267  fodjuomnilemdc  7311  exmidfodomrlemr  7380  exmidfodomrlemrALT  7381
  Copyright terms: Public domain W3C validator