ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune Unicode version

Theorem djune 7182
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)

Proof of Theorem djune
StepHypRef Expression
1 1n0 6520 . . . . 5  |-  1o  =/=  (/)
21nesymi 2422 . . . 4  |-  -.  (/)  =  1o
3 1stinl 7178 . . . . 5  |-  ( A  e.  V  ->  ( 1st `  (inl `  A
) )  =  (/) )
4 1stinr 7180 . . . . 5  |-  ( B  e.  W  ->  ( 1st `  (inr `  B
) )  =  1o )
53, 4eqeqan12d 2221 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) )  <->  (/)  =  1o ) )
62, 5mtbiri 677 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
7 fveq2 5578 . . 3  |-  ( (inl
`  A )  =  (inr `  B )  ->  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
86, 7nsyl 629 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  (inl `  A
)  =  (inr `  B ) )
98neqned 2383 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   (/)c0 3460   ` cfv 5272   1stc1st 6226   1oc1o 6497  inlcinl 7149  inrcinr 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fv 5280  df-1st 6228  df-1o 6504  df-inl 7151  df-inr 7152
This theorem is referenced by:  omp1eomlem  7198  difinfsnlem  7203  difinfsn  7204  fodjuomnilemdc  7248  exmidfodomrlemr  7312  exmidfodomrlemrALT  7313
  Copyright terms: Public domain W3C validator