ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune Unicode version

Theorem djune 7144
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)

Proof of Theorem djune
StepHypRef Expression
1 1n0 6490 . . . . 5  |-  1o  =/=  (/)
21nesymi 2413 . . . 4  |-  -.  (/)  =  1o
3 1stinl 7140 . . . . 5  |-  ( A  e.  V  ->  ( 1st `  (inl `  A
) )  =  (/) )
4 1stinr 7142 . . . . 5  |-  ( B  e.  W  ->  ( 1st `  (inr `  B
) )  =  1o )
53, 4eqeqan12d 2212 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) )  <->  (/)  =  1o ) )
62, 5mtbiri 676 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
7 fveq2 5558 . . 3  |-  ( (inl
`  A )  =  (inr `  B )  ->  ( 1st `  (inl `  A ) )  =  ( 1st `  (inr `  B ) ) )
86, 7nsyl 629 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  (inl `  A
)  =  (inr `  B ) )
98neqned 2374 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   (/)c0 3450   ` cfv 5258   1stc1st 6196   1oc1o 6467  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-1st 6198  df-1o 6474  df-inl 7113  df-inr 7114
This theorem is referenced by:  omp1eomlem  7160  difinfsnlem  7165  difinfsn  7166  fodjuomnilemdc  7210  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270
  Copyright terms: Public domain W3C validator