ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn Unicode version

Theorem elrn 4852
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1  |-  A  e. 
_V
Assertion
Ref Expression
elrn  |-  ( A  e.  ran  B  <->  E. x  x B A )
Distinct variable groups:    x, A    x, B

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . . 3  |-  A  e. 
_V
21elrn2 4851 . 2  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
3 df-br 3988 . . 3  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
43exbii 1598 . 2  |-  ( E. x  x B A  <->  E. x <. x ,  A >.  e.  B )
52, 4bitr4i 186 1  |-  ( A  e.  ran  B  <->  E. x  x B A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1485    e. wcel 2141   _Vcvv 2730   <.cop 3584   class class class wbr 3987   ran crn 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-cnv 4617  df-dm 4619  df-rn 4620
This theorem is referenced by:  dmcosseq  4880  rnco  5115  dffo4  5642  rntpos  6234  fclim  11250  dvfgg  13416
  Copyright terms: Public domain W3C validator