ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn Unicode version

Theorem elrn 4967
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1  |-  A  e. 
_V
Assertion
Ref Expression
elrn  |-  ( A  e.  ran  B  <->  E. x  x B A )
Distinct variable groups:    x, A    x, B

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . . 3  |-  A  e. 
_V
21elrn2 4966 . 2  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
3 df-br 4084 . . 3  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
43exbii 1651 . 2  |-  ( E. x  x B A  <->  E. x <. x ,  A >.  e.  B )
52, 4bitr4i 187 1  |-  ( A  e.  ran  B  <->  E. x  x B A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669   class class class wbr 4083   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  dmcosseq  4996  rnco  5235  dffo4  5783  rntpos  6403  fclim  11805  dvfgg  15362
  Copyright terms: Public domain W3C validator