ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn Unicode version

Theorem elrn 4847
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1  |-  A  e. 
_V
Assertion
Ref Expression
elrn  |-  ( A  e.  ran  B  <->  E. x  x B A )
Distinct variable groups:    x, A    x, B

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . . 3  |-  A  e. 
_V
21elrn2 4846 . 2  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
3 df-br 3983 . . 3  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
43exbii 1593 . 2  |-  ( E. x  x B A  <->  E. x <. x ,  A >.  e.  B )
52, 4bitr4i 186 1  |-  ( A  e.  ran  B  <->  E. x  x B A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1480    e. wcel 2136   _Vcvv 2726   <.cop 3579   class class class wbr 3982   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  dmcosseq  4875  rnco  5110  dffo4  5633  rntpos  6225  fclim  11235  dvfgg  13297
  Copyright terms: Public domain W3C validator