Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvinfex | Unicode version |
Description: Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
cnvinfex.ex |
Ref | Expression |
---|---|
cnvinfex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvinfex.ex | . 2 | |
2 | vex 2712 | . . . . . . . 8 | |
3 | vex 2712 | . . . . . . . 8 | |
4 | 2, 3 | brcnv 4762 | . . . . . . 7 |
5 | 4 | a1i 9 | . . . . . 6 |
6 | 5 | notbid 657 | . . . . 5 |
7 | 6 | ralbidv 2454 | . . . 4 |
8 | 3, 2 | brcnv 4762 | . . . . . . 7 |
9 | 8 | a1i 9 | . . . . . 6 |
10 | vex 2712 | . . . . . . . . 9 | |
11 | 3, 10 | brcnv 4762 | . . . . . . . 8 |
12 | 11 | a1i 9 | . . . . . . 7 |
13 | 12 | rexbidv 2455 | . . . . . 6 |
14 | 9, 13 | imbi12d 233 | . . . . 5 |
15 | 14 | ralbidv 2454 | . . . 4 |
16 | 7, 15 | anbi12d 465 | . . 3 |
17 | 16 | rexbidv 2455 | . 2 |
18 | 1, 17 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wral 2432 wrex 2433 class class class wbr 3961 ccnv 4578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-cnv 4587 |
This theorem is referenced by: infvalti 6954 infclti 6955 inflbti 6956 infglbti 6957 infisoti 6964 infrenegsupex 9484 infxrnegsupex 11137 |
Copyright terms: Public domain | W3C validator |