| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvinfex | Unicode version | ||
| Description: Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| cnvinfex.ex |
|
| Ref | Expression |
|---|---|
| cnvinfex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvinfex.ex |
. 2
| |
| 2 | vex 2775 |
. . . . . . . 8
| |
| 3 | vex 2775 |
. . . . . . . 8
| |
| 4 | 2, 3 | brcnv 4862 |
. . . . . . 7
|
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 5 | notbid 669 |
. . . . 5
|
| 7 | 6 | ralbidv 2506 |
. . . 4
|
| 8 | 3, 2 | brcnv 4862 |
. . . . . . 7
|
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | vex 2775 |
. . . . . . . . 9
| |
| 11 | 3, 10 | brcnv 4862 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | 12 | rexbidv 2507 |
. . . . . 6
|
| 14 | 9, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | ralbidv 2506 |
. . . 4
|
| 16 | 7, 15 | anbi12d 473 |
. . 3
|
| 17 | 16 | rexbidv 2507 |
. 2
|
| 18 | 1, 17 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-cnv 4684 |
| This theorem is referenced by: infvalti 7126 infclti 7127 inflbti 7128 infglbti 7129 infisoti 7136 infrenegsupex 9717 infxrnegsupex 11607 |
| Copyright terms: Public domain | W3C validator |