ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvinfex Unicode version

Theorem cnvinfex 7019
Description: Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
cnvinfex.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
cnvinfex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
Distinct variable groups:    ph, x    ph, y    ph, z
Allowed substitution hints:    A( x, y, z)    B( x, y, z)    R( x, y, z)

Proof of Theorem cnvinfex
StepHypRef Expression
1 cnvinfex.ex . 2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
2 vex 2742 . . . . . . . 8  |-  x  e. 
_V
3 vex 2742 . . . . . . . 8  |-  y  e. 
_V
42, 3brcnv 4812 . . . . . . 7  |-  ( x `' R y  <->  y R x )
54a1i 9 . . . . . 6  |-  ( ph  ->  ( x `' R
y  <->  y R x ) )
65notbid 667 . . . . 5  |-  ( ph  ->  ( -.  x `' R y  <->  -.  y R x ) )
76ralbidv 2477 . . . 4  |-  ( ph  ->  ( A. y  e.  B  -.  x `' R y  <->  A. y  e.  B  -.  y R x ) )
83, 2brcnv 4812 . . . . . . 7  |-  ( y `' R x  <->  x R
y )
98a1i 9 . . . . . 6  |-  ( ph  ->  ( y `' R x 
<->  x R y ) )
10 vex 2742 . . . . . . . . 9  |-  z  e. 
_V
113, 10brcnv 4812 . . . . . . . 8  |-  ( y `' R z  <->  z R
y )
1211a1i 9 . . . . . . 7  |-  ( ph  ->  ( y `' R
z  <->  z R y ) )
1312rexbidv 2478 . . . . . 6  |-  ( ph  ->  ( E. z  e.  B  y `' R
z  <->  E. z  e.  B  z R y ) )
149, 13imbi12d 234 . . . . 5  |-  ( ph  ->  ( ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  ( x R y  ->  E. z  e.  B  z R
y ) ) )
1514ralbidv 2477 . . . 4  |-  ( ph  ->  ( A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) )
167, 15anbi12d 473 . . 3  |-  ( ph  ->  ( ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z ) )  <-> 
( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) ) )
1716rexbidv 2478 . 2  |-  ( ph  ->  ( E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z ) )  <->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
181, 17mpbird 167 1  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wral 2455   E.wrex 2456   class class class wbr 4005   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636
This theorem is referenced by:  infvalti  7023  infclti  7024  inflbti  7025  infglbti  7026  infisoti  7033  infrenegsupex  9596  infxrnegsupex  11273
  Copyright terms: Public domain W3C validator