| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvinfex | Unicode version | ||
| Description: Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| cnvinfex.ex |
|
| Ref | Expression |
|---|---|
| cnvinfex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvinfex.ex |
. 2
| |
| 2 | vex 2766 |
. . . . . . . 8
| |
| 3 | vex 2766 |
. . . . . . . 8
| |
| 4 | 2, 3 | brcnv 4850 |
. . . . . . 7
|
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 5 | notbid 668 |
. . . . 5
|
| 7 | 6 | ralbidv 2497 |
. . . 4
|
| 8 | 3, 2 | brcnv 4850 |
. . . . . . 7
|
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | vex 2766 |
. . . . . . . . 9
| |
| 11 | 3, 10 | brcnv 4850 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | 12 | rexbidv 2498 |
. . . . . 6
|
| 14 | 9, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | ralbidv 2497 |
. . . 4
|
| 16 | 7, 15 | anbi12d 473 |
. . 3
|
| 17 | 16 | rexbidv 2498 |
. 2
|
| 18 | 1, 17 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 |
| This theorem is referenced by: infvalti 7097 infclti 7098 inflbti 7099 infglbti 7100 infisoti 7107 infrenegsupex 9685 infxrnegsupex 11445 |
| Copyright terms: Public domain | W3C validator |