ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab1 Unicode version

Theorem nfopab1 4074
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1  |-  F/_ x { <. x ,  y
>.  |  ph }

Proof of Theorem nfopab1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4067 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
2 nfe1 1496 . . 3  |-  F/ x E. x E. y ( z  =  <. x ,  y >.  /\  ph )
32nfab 2324 . 2  |-  F/_ x { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
41, 3nfcxfr 2316 1  |-  F/_ x { <. x ,  y
>.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492   {cab 2163   F/_wnfc 2306   <.cop 3597   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-opab 4067
This theorem is referenced by:  nfmpt1  4098  opelopabsb  4262  ssopab2b  4278  dmopab  4840  rnopab  4876  funopab  5253  0neqopab  5922
  Copyright terms: Public domain W3C validator