ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab1 Unicode version

Theorem nfopab1 4102
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1  |-  F/_ x { <. x ,  y
>.  |  ph }

Proof of Theorem nfopab1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4095 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
2 nfe1 1510 . . 3  |-  F/ x E. x E. y ( z  =  <. x ,  y >.  /\  ph )
32nfab 2344 . 2  |-  F/_ x { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
41, 3nfcxfr 2336 1  |-  F/_ x { <. x ,  y
>.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506   {cab 2182   F/_wnfc 2326   <.cop 3625   {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-opab 4095
This theorem is referenced by:  nfmpt1  4126  opelopabsb  4294  ssopab2b  4311  dmopab  4877  rnopab  4913  funopab  5293  0neqopab  5967
  Copyright terms: Public domain W3C validator