ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab1 Unicode version

Theorem nfopab1 4153
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1  |-  F/_ x { <. x ,  y
>.  |  ph }

Proof of Theorem nfopab1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4146 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
2 nfe1 1542 . . 3  |-  F/ x E. x E. y ( z  =  <. x ,  y >.  /\  ph )
32nfab 2377 . 2  |-  F/_ x { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
41, 3nfcxfr 2369 1  |-  F/_ x { <. x ,  y
>.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538   {cab 2215   F/_wnfc 2359   <.cop 3669   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-opab 4146
This theorem is referenced by:  nfmpt1  4177  opelopabsb  4348  ssopab2b  4365  dmopab  4934  rnopab  4971  funopab  5353  0neqopab  6049
  Copyright terms: Public domain W3C validator