Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfopab1 | Unicode version |
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4044 | . 2 | |
2 | nfe1 1484 | . . 3 | |
3 | 2 | nfab 2313 | . 2 |
4 | 1, 3 | nfcxfr 2305 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 cab 2151 wnfc 2295 cop 3579 copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-opab 4044 |
This theorem is referenced by: nfmpt1 4075 opelopabsb 4238 ssopab2b 4254 dmopab 4815 rnopab 4851 funopab 5223 0neqopab 5887 |
Copyright terms: Public domain | W3C validator |