ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt Unicode version

Theorem nfmpt 4152
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt.1  |-  F/_ x A
nfmpt.2  |-  F/_ x B
Assertion
Ref Expression
nfmpt  |-  F/_ x
( y  e.  A  |->  B )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfmpt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4123 . 2  |-  ( y  e.  A  |->  B )  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  B ) }
2 nfmpt.1 . . . . 5  |-  F/_ x A
32nfcri 2344 . . . 4  |-  F/ x  y  e.  A
4 nfmpt.2 . . . . 5  |-  F/_ x B
54nfeq2 2362 . . . 4  |-  F/ x  z  =  B
63, 5nfan 1589 . . 3  |-  F/ x
( y  e.  A  /\  z  =  B
)
76nfopab 4128 . 2  |-  F/_ x { <. y ,  z
>.  |  ( y  e.  A  /\  z  =  B ) }
81, 7nfcxfr 2347 1  |-  F/_ x
( y  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   F/_wnfc 2337   {copab 4120    |-> cmpt 4121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-opab 4122  df-mpt 4123
This theorem is referenced by:  nfof  6187  nffrec  6505  mapxpen  6970  nfsum1  11782  nfsum  11783  nfcprod1  11980  nfcprod  11981  ctiunct  12926  fsumcncntop  15154  limcmpted  15250  dvmptfsum  15312
  Copyright terms: Public domain W3C validator