ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt Unicode version

Theorem nfmpt 4136
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt.1  |-  F/_ x A
nfmpt.2  |-  F/_ x B
Assertion
Ref Expression
nfmpt  |-  F/_ x
( y  e.  A  |->  B )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfmpt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4107 . 2  |-  ( y  e.  A  |->  B )  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  B ) }
2 nfmpt.1 . . . . 5  |-  F/_ x A
32nfcri 2342 . . . 4  |-  F/ x  y  e.  A
4 nfmpt.2 . . . . 5  |-  F/_ x B
54nfeq2 2360 . . . 4  |-  F/ x  z  =  B
63, 5nfan 1588 . . 3  |-  F/ x
( y  e.  A  /\  z  =  B
)
76nfopab 4112 . 2  |-  F/_ x { <. y ,  z
>.  |  ( y  e.  A  /\  z  =  B ) }
81, 7nfcxfr 2345 1  |-  F/_ x
( y  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   F/_wnfc 2335   {copab 4104    |-> cmpt 4105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-opab 4106  df-mpt 4107
This theorem is referenced by:  nfof  6164  nffrec  6482  mapxpen  6945  nfsum1  11667  nfsum  11668  nfcprod1  11865  nfcprod  11866  ctiunct  12811  fsumcncntop  15039  limcmpted  15135  dvmptfsum  15197
  Copyright terms: Public domain W3C validator