Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfopab | GIF version |
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4060 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfv 1526 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉 | |
3 | nfopab.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
4 | 2, 3 | nfan 1563 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
5 | 4 | nfex 1635 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
6 | 5 | nfex 1635 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
7 | 6 | nfab 2322 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
8 | 1, 7 | nfcxfr 2314 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 Ⅎwnf 1458 ∃wex 1490 {cab 2161 Ⅎwnfc 2304 〈cop 3592 {copab 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-opab 4060 |
This theorem is referenced by: csbopabg 4076 nfmpt 4090 nfxp 4647 nfco 4785 nfcnv 4799 nfofr 6079 |
Copyright terms: Public domain | W3C validator |