ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab GIF version

Theorem nfopab 4097
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
nfopab.1 𝑧𝜑
Assertion
Ref Expression
nfopab 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4091 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfv 1539 . . . . . 6 𝑧 𝑤 = ⟨𝑥, 𝑦
3 nfopab.1 . . . . . 6 𝑧𝜑
42, 3nfan 1576 . . . . 5 𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
54nfex 1648 . . . 4 𝑧𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
65nfex 1648 . . 3 𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
76nfab 2341 . 2 𝑧{𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
81, 7nfcxfr 2333 1 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wnf 1471  wex 1503  {cab 2179  wnfc 2323  cop 3621  {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-opab 4091
This theorem is referenced by:  csbopabg  4107  nfmpt  4121  nfxp  4686  nfco  4827  nfcnv  4841  nfofr  6137
  Copyright terms: Public domain W3C validator