| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfopab | GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| nfopab.1 | ⊢ Ⅎ𝑧𝜑 | 
| Ref | Expression | 
|---|---|
| nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-opab 4095 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉 | |
| 3 | nfopab.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 2, 3 | nfan 1579 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) | 
| 5 | 4 | nfex 1651 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) | 
| 6 | 5 | nfex 1651 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) | 
| 7 | 6 | nfab 2344 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | 
| 8 | 1, 7 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 {cab 2182 Ⅎwnfc 2326 〈cop 3625 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-opab 4095 | 
| This theorem is referenced by: csbopabg 4111 nfmpt 4125 nfxp 4690 nfco 4831 nfcnv 4845 nfofr 6142 | 
| Copyright terms: Public domain | W3C validator |