| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfopab | GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 4114 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfv 1552 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉 | |
| 3 | nfopab.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 2, 3 | nfan 1589 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 5 | 4 | nfex 1661 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 6 | 5 | nfex 1661 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | 6 | nfab 2354 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 8 | 1, 7 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 {cab 2192 Ⅎwnfc 2336 〈cop 3641 {copab 4112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-opab 4114 |
| This theorem is referenced by: csbopabg 4130 nfmpt 4144 nfxp 4710 nfco 4851 nfcnv 4865 nfofr 6178 |
| Copyright terms: Public domain | W3C validator |