![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfopab | GIF version |
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfopab | ⊢ Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4067 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = ⟨𝑥, 𝑦⟩ | |
3 | nfopab.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
4 | 2, 3 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
5 | 4 | nfex 1637 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
6 | 5 | nfex 1637 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
7 | 6 | nfab 2324 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
8 | 1, 7 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 {cab 2163 Ⅎwnfc 2306 ⟨cop 3597 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-opab 4067 |
This theorem is referenced by: csbopabg 4083 nfmpt 4097 nfxp 4655 nfco 4794 nfcnv 4808 nfofr 6091 |
Copyright terms: Public domain | W3C validator |