ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab GIF version

Theorem nfopab 3936
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
nfopab.1 𝑧𝜑
Assertion
Ref Expression
nfopab 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-opab 3930 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfv 1476 . . . . . 6 𝑧 𝑤 = ⟨𝑥, 𝑦
3 nfopab.1 . . . . . 6 𝑧𝜑
42, 3nfan 1512 . . . . 5 𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
54nfex 1584 . . . 4 𝑧𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
65nfex 1584 . . 3 𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
76nfab 2245 . 2 𝑧{𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
81, 7nfcxfr 2237 1 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1299  wnf 1404  wex 1436  {cab 2086  wnfc 2227  cop 3477  {copab 3928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-opab 3930
This theorem is referenced by:  csbopabg  3946  nfmpt  3960  nfxp  4504  nfco  4642  nfcnv  4656  nfofr  5920
  Copyright terms: Public domain W3C validator