ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab Unicode version

Theorem funopab 5166
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
Assertion
Ref Expression
funopab  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem funopab
StepHypRef Expression
1 relopab 4674 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 nfopab1 4005 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
3 nfopab2 4006 . . . 4  |-  F/_ y { <. x ,  y
>.  |  ph }
42, 3dffun6f 5144 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  ( Rel  {
<. x ,  y >.  |  ph }  /\  A. x E* y  x { <. x ,  y >.  |  ph } y ) )
51, 4mpbiran 925 . 2  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y  x { <. x ,  y >.  |  ph } y )
6 df-br 3938 . . . . 5  |-  ( x { <. x ,  y
>.  |  ph } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ph } )
7 opabid 4187 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
86, 7bitri 183 . . . 4  |-  ( x { <. x ,  y
>.  |  ph } y  <->  ph )
98mobii 2037 . . 3  |-  ( E* y  x { <. x ,  y >.  |  ph } y  <->  E* y ph )
109albii 1447 . 2  |-  ( A. x E* y  x { <. x ,  y >.  |  ph } y  <->  A. x E* y ph )
115, 10bitri 183 1  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1330    e. wcel 1481   E*wmo 2001   <.cop 3535   class class class wbr 3937   {copab 3996   Rel wrel 4552   Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-fun 5133
This theorem is referenced by:  funopabeq  5167  isarep2  5218  fnopabg  5254  fvopab3ig  5503  opabex  5652  funoprabg  5878
  Copyright terms: Public domain W3C validator