ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab Unicode version

Theorem funopab 5223
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
Assertion
Ref Expression
funopab  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem funopab
StepHypRef Expression
1 relopab 4731 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 nfopab1 4051 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
3 nfopab2 4052 . . . 4  |-  F/_ y { <. x ,  y
>.  |  ph }
42, 3dffun6f 5201 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  ( Rel  {
<. x ,  y >.  |  ph }  /\  A. x E* y  x { <. x ,  y >.  |  ph } y ) )
51, 4mpbiran 930 . 2  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y  x { <. x ,  y >.  |  ph } y )
6 df-br 3983 . . . . 5  |-  ( x { <. x ,  y
>.  |  ph } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ph } )
7 opabid 4235 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
86, 7bitri 183 . . . 4  |-  ( x { <. x ,  y
>.  |  ph } y  <->  ph )
98mobii 2051 . . 3  |-  ( E* y  x { <. x ,  y >.  |  ph } y  <->  E* y ph )
109albii 1458 . 2  |-  ( A. x E* y  x { <. x ,  y >.  |  ph } y  <->  A. x E* y ph )
115, 10bitri 183 1  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341   E*wmo 2015    e. wcel 2136   <.cop 3579   class class class wbr 3982   {copab 4042   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by:  funopabeq  5224  isarep2  5275  fnopabg  5311  fvopab3ig  5560  opabex  5709  funoprabg  5941
  Copyright terms: Public domain W3C validator