Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funopab | Unicode version |
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
Ref | Expression |
---|---|
funopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4747 | . . 3 | |
2 | nfopab1 4067 | . . . 4 | |
3 | nfopab2 4068 | . . . 4 | |
4 | 2, 3 | dffun6f 5221 | . . 3 |
5 | 1, 4 | mpbiran 940 | . 2 |
6 | df-br 3999 | . . . . 5 | |
7 | opabid 4251 | . . . . 5 | |
8 | 6, 7 | bitri 184 | . . . 4 |
9 | 8 | mobii 2061 | . . 3 |
10 | 9 | albii 1468 | . 2 |
11 | 5, 10 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wmo 2025 wcel 2146 cop 3592 class class class wbr 3998 copab 4058 wrel 4625 wfun 5202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-fun 5210 |
This theorem is referenced by: funopabeq 5244 isarep2 5295 fnopabg 5331 fvopab3ig 5582 opabex 5732 funoprabg 5964 |
Copyright terms: Public domain | W3C validator |