ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt1 Unicode version

Theorem nfmpt1 4016
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
Assertion
Ref Expression
nfmpt1  |-  F/_ x
( x  e.  A  |->  B )

Proof of Theorem nfmpt1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpt 3986 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }
2 nfopab1 3992 . 2  |-  F/_ x { <. x ,  z
>.  |  ( x  e.  A  /\  z  =  B ) }
31, 2nfcxfr 2276 1  |-  F/_ x
( x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331    e. wcel 1480   F/_wnfc 2266   {copab 3983    |-> cmpt 3984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-opab 3985  df-mpt 3986
This theorem is referenced by:  nffvmpt1  5425  fvmptss2  5489  fvmptssdm  5498  fvmptdf  5501  mpteqb  5504  fvmptf  5506  ralrnmpt  5555  rexrnmpt  5556  f1ompt  5564  f1mpt  5665  fliftfun  5690  dom2lem  6659  mapxpen  6735  mkvprop  7025  nfcprod1  11316  cnmpt11  12441
  Copyright terms: Public domain W3C validator