ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab1 GIF version

Theorem nfopab1 4152
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4145 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 1542 . . 3 𝑥𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfab 2377 . 2 𝑥{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
41, 3nfcxfr 2369 1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  {cab 2215  wnfc 2359  cop 3669  {copab 4143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-opab 4145
This theorem is referenced by:  nfmpt1  4176  opelopabsb  4347  ssopab2b  4364  dmopab  4933  rnopab  4970  funopab  5352  0neqopab  6048
  Copyright terms: Public domain W3C validator