| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfopab2 | GIF version | ||
| Description: The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfopab2 | ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 4122 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfe1 1520 | . . . 4 ⊢ Ⅎ𝑦∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
| 3 | 2 | nfex 1661 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | 3 | nfab 2355 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 5 | 1, 4 | nfcxfr 2347 | 1 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 {cab 2193 Ⅎwnfc 2337 〈cop 3646 {copab 4120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-opab 4122 |
| This theorem is referenced by: opelopabsb 4324 ssopab2b 4341 dmopab 4908 rnopab 4944 funopab 5325 0neqopab 6013 |
| Copyright terms: Public domain | W3C validator |