| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | Unicode version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 |
|
| Ref | Expression |
|---|---|
| oveqdr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 |
. . 3
| |
| 2 | 1 | oveqd 5942 |
. 2
|
| 3 | 2 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: gsumpropd 13094 grppropstrg 13221 grpsubpropdg 13306 isrngd 13585 crngpropd 13671 isringd 13673 ring1 13691 opprrng 13709 opprrngbg 13710 opprring 13711 opprringbg 13712 opprsubgg 13716 mulgass3 13717 rngidpropdg 13778 invrpropdg 13781 subrngpropd 13848 subrgpropd 13885 isdomn 13901 sraring 14081 sralmod 14082 sralmod0g 14083 issubrgd 14084 rlmvnegg 14097 lidlrsppropdg 14127 crngridl 14162 znzrh 14275 zncrng 14277 |
| Copyright terms: Public domain | W3C validator |