| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | Unicode version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 |
|
| Ref | Expression |
|---|---|
| oveqdr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 |
. . 3
| |
| 2 | 1 | oveqd 5984 |
. 2
|
| 3 | 2 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: gsumpropd 13339 grppropstrg 13466 grpsubpropdg 13551 isrngd 13830 crngpropd 13916 isringd 13918 ring1 13936 opprrng 13954 opprrngbg 13955 opprring 13956 opprringbg 13957 opprsubgg 13961 mulgass3 13962 rngidpropdg 14023 invrpropdg 14026 subrngpropd 14093 subrgpropd 14130 isdomn 14146 sraring 14326 sralmod 14327 sralmod0g 14328 issubrgd 14329 rlmvnegg 14342 lidlrsppropdg 14372 crngridl 14407 znzrh 14520 zncrng 14522 |
| Copyright terms: Public domain | W3C validator |