ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqdr Unicode version

Theorem oveqdr 5953
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.)
Hypothesis
Ref Expression
oveqdr.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
oveqdr  |-  ( (
ph  /\  ps )  ->  ( x F y )  =  ( x G y ) )

Proof of Theorem oveqdr
StepHypRef Expression
1 oveqdr.1 . . 3  |-  ( ph  ->  F  =  G )
21oveqd 5942 . 2  |-  ( ph  ->  ( x F y )  =  ( x G y ) )
32adantr 276 1  |-  ( (
ph  /\  ps )  ->  ( x F y )  =  ( x G y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  gsumpropd  13096  grppropstrg  13223  grpsubpropdg  13308  isrngd  13587  crngpropd  13673  isringd  13675  ring1  13693  opprrng  13711  opprrngbg  13712  opprring  13713  opprringbg  13714  opprsubgg  13718  mulgass3  13719  rngidpropdg  13780  invrpropdg  13783  subrngpropd  13850  subrgpropd  13887  isdomn  13903  sraring  14083  sralmod  14084  sralmod0g  14085  issubrgd  14086  rlmvnegg  14099  lidlrsppropdg  14129  crngridl  14164  znzrh  14277  zncrng  14279
  Copyright terms: Public domain W3C validator