| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | Unicode version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 |
|
| Ref | Expression |
|---|---|
| oveqdr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 |
. . 3
| |
| 2 | 1 | oveqd 5942 |
. 2
|
| 3 | 2 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: gsumpropd 13096 grppropstrg 13223 grpsubpropdg 13308 isrngd 13587 crngpropd 13673 isringd 13675 ring1 13693 opprrng 13711 opprrngbg 13712 opprring 13713 opprringbg 13714 opprsubgg 13718 mulgass3 13719 rngidpropdg 13780 invrpropdg 13783 subrngpropd 13850 subrgpropd 13887 isdomn 13903 sraring 14083 sralmod 14084 sralmod0g 14085 issubrgd 14086 rlmvnegg 14099 lidlrsppropdg 14129 crngridl 14164 znzrh 14277 zncrng 14279 |
| Copyright terms: Public domain | W3C validator |