| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | Unicode version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 |
|
| Ref | Expression |
|---|---|
| oveqdr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 |
. . 3
| |
| 2 | 1 | oveqd 5963 |
. 2
|
| 3 | 2 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: gsumpropd 13257 grppropstrg 13384 grpsubpropdg 13469 isrngd 13748 crngpropd 13834 isringd 13836 ring1 13854 opprrng 13872 opprrngbg 13873 opprring 13874 opprringbg 13875 opprsubgg 13879 mulgass3 13880 rngidpropdg 13941 invrpropdg 13944 subrngpropd 14011 subrgpropd 14048 isdomn 14064 sraring 14244 sralmod 14245 sralmod0g 14246 issubrgd 14247 rlmvnegg 14260 lidlrsppropdg 14290 crngridl 14325 znzrh 14438 zncrng 14440 |
| Copyright terms: Public domain | W3C validator |