ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab1 Unicode version

Theorem elfvmptrab1 5590
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
elfvmptrab1.v  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
Assertion
Ref Expression
elfvmptrab1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y    y, m
Allowed substitution hints:    ph( x, y, m)    F( x, y, m)    M( m)    V( y, m)    X( m)    Y( x, m)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 elfvmptrab1.f . . . . 5  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
21funmpt2 5237 . . . 4  |-  Fun  F
3 funrel 5215 . . . 4  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . . 3  |-  Rel  F
5 relelfvdm 5528 . . 3  |-  ( ( Rel  F  /\  Y  e.  ( F `  X
) )  ->  X  e.  dom  F )
64, 5mpan 422 . 2  |-  ( Y  e.  ( F `  X )  ->  X  e.  dom  F )
71dmmptss 5107 . . . . . 6  |-  dom  F  C_  V
87sseli 3143 . . . . 5  |-  ( X  e.  dom  F  ->  X  e.  V )
9 elfvmptrab1.v . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
10 rabexg 4132 . . . . . 6  |-  ( [_ X  /  m ]_ M  e.  _V  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
118, 9, 103syl 17 . . . . 5  |-  ( X  e.  dom  F  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
12 nfcv 2312 . . . . . 6  |-  F/_ x X
13 nfsbc1v 2973 . . . . . . 7  |-  F/ x [. X  /  x ]. ph
14 nfcv 2312 . . . . . . . 8  |-  F/_ x M
1512, 14nfcsb 3086 . . . . . . 7  |-  F/_ x [_ X  /  m ]_ M
1613, 15nfrabxy 2650 . . . . . 6  |-  F/_ x { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
17 csbeq1 3052 . . . . . . 7  |-  ( x  =  X  ->  [_ x  /  m ]_ M  = 
[_ X  /  m ]_ M )
18 sbceq1a 2964 . . . . . . 7  |-  ( x  =  X  ->  ( ph 
<-> 
[. X  /  x ]. ph ) )
1917, 18rabeqbidv 2725 . . . . . 6  |-  ( x  =  X  ->  { y  e.  [_ x  /  m ]_ M  |  ph }  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2012, 16, 19, 1fvmptf 5588 . . . . 5  |-  ( ( X  e.  V  /\  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )  ->  ( F `  X )  =  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph } )
218, 11, 20syl2anc 409 . . . 4  |-  ( X  e.  dom  F  -> 
( F `  X
)  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2221eleq2d 2240 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  <-> 
Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
) )
23 elrabi 2883 . . . . 5  |-  ( Y  e.  { y  e. 
[_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  Y  e.  [_ X  /  m ]_ M )
248, 23anim12i 336 . . . 4  |-  ( ( X  e.  dom  F  /\  Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) )
2524ex 114 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) ) )
2622, 25sylbid 149 . 2  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) ) )
276, 26mpcom 36 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {crab 2452   _Vcvv 2730   [.wsbc 2955   [_csb 3049    |-> cmpt 4050   dom cdm 4611   Rel wrel 4616   Fun wfun 5192   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  elfvmptrab  5591
  Copyright terms: Public domain W3C validator