ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab1 Unicode version

Theorem elfvmptrab1 5652
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
elfvmptrab1.v  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
Assertion
Ref Expression
elfvmptrab1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y    y, m
Allowed substitution hints:    ph( x, y, m)    F( x, y, m)    M( m)    V( y, m)    X( m)    Y( x, m)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 elfvmptrab1.f . . . . 5  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
21funmpt2 5293 . . . 4  |-  Fun  F
3 funrel 5271 . . . 4  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . . 3  |-  Rel  F
5 relelfvdm 5586 . . 3  |-  ( ( Rel  F  /\  Y  e.  ( F `  X
) )  ->  X  e.  dom  F )
64, 5mpan 424 . 2  |-  ( Y  e.  ( F `  X )  ->  X  e.  dom  F )
71dmmptss 5162 . . . . . 6  |-  dom  F  C_  V
87sseli 3175 . . . . 5  |-  ( X  e.  dom  F  ->  X  e.  V )
9 elfvmptrab1.v . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
10 rabexg 4172 . . . . . 6  |-  ( [_ X  /  m ]_ M  e.  _V  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
118, 9, 103syl 17 . . . . 5  |-  ( X  e.  dom  F  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
12 nfcv 2336 . . . . . 6  |-  F/_ x X
13 nfsbc1v 3004 . . . . . . 7  |-  F/ x [. X  /  x ]. ph
14 nfcv 2336 . . . . . . . 8  |-  F/_ x M
1512, 14nfcsb 3118 . . . . . . 7  |-  F/_ x [_ X  /  m ]_ M
1613, 15nfrabw 2675 . . . . . 6  |-  F/_ x { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
17 csbeq1 3083 . . . . . . 7  |-  ( x  =  X  ->  [_ x  /  m ]_ M  = 
[_ X  /  m ]_ M )
18 sbceq1a 2995 . . . . . . 7  |-  ( x  =  X  ->  ( ph 
<-> 
[. X  /  x ]. ph ) )
1917, 18rabeqbidv 2755 . . . . . 6  |-  ( x  =  X  ->  { y  e.  [_ x  /  m ]_ M  |  ph }  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2012, 16, 19, 1fvmptf 5650 . . . . 5  |-  ( ( X  e.  V  /\  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )  ->  ( F `  X )  =  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph } )
218, 11, 20syl2anc 411 . . . 4  |-  ( X  e.  dom  F  -> 
( F `  X
)  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2221eleq2d 2263 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  <-> 
Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
) )
23 elrabi 2913 . . . . 5  |-  ( Y  e.  { y  e. 
[_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  Y  e.  [_ X  /  m ]_ M )
248, 23anim12i 338 . . . 4  |-  ( ( X  e.  dom  F  /\  Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) )
2524ex 115 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) ) )
2622, 25sylbid 150 . 2  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) ) )
276, 26mpcom 36 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760   [.wsbc 2985   [_csb 3080    |-> cmpt 4090   dom cdm 4659   Rel wrel 4664   Fun wfun 5248   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262
This theorem is referenced by:  elfvmptrab  5653
  Copyright terms: Public domain W3C validator