ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab1 Unicode version

Theorem elfvmptrab1 5668
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
elfvmptrab1.v  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
Assertion
Ref Expression
elfvmptrab1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y    y, m
Allowed substitution hints:    ph( x, y, m)    F( x, y, m)    M( m)    V( y, m)    X( m)    Y( x, m)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 elfvmptrab1.f . . . . 5  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
21funmpt2 5307 . . . 4  |-  Fun  F
3 funrel 5285 . . . 4  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . . 3  |-  Rel  F
5 relelfvdm 5602 . . 3  |-  ( ( Rel  F  /\  Y  e.  ( F `  X
) )  ->  X  e.  dom  F )
64, 5mpan 424 . 2  |-  ( Y  e.  ( F `  X )  ->  X  e.  dom  F )
71dmmptss 5176 . . . . . 6  |-  dom  F  C_  V
87sseli 3188 . . . . 5  |-  ( X  e.  dom  F  ->  X  e.  V )
9 elfvmptrab1.v . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
10 rabexg 4186 . . . . . 6  |-  ( [_ X  /  m ]_ M  e.  _V  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
118, 9, 103syl 17 . . . . 5  |-  ( X  e.  dom  F  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
12 nfcv 2347 . . . . . 6  |-  F/_ x X
13 nfsbc1v 3016 . . . . . . 7  |-  F/ x [. X  /  x ]. ph
14 nfcv 2347 . . . . . . . 8  |-  F/_ x M
1512, 14nfcsb 3130 . . . . . . 7  |-  F/_ x [_ X  /  m ]_ M
1613, 15nfrabw 2686 . . . . . 6  |-  F/_ x { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
17 csbeq1 3095 . . . . . . 7  |-  ( x  =  X  ->  [_ x  /  m ]_ M  = 
[_ X  /  m ]_ M )
18 sbceq1a 3007 . . . . . . 7  |-  ( x  =  X  ->  ( ph 
<-> 
[. X  /  x ]. ph ) )
1917, 18rabeqbidv 2766 . . . . . 6  |-  ( x  =  X  ->  { y  e.  [_ x  /  m ]_ M  |  ph }  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2012, 16, 19, 1fvmptf 5666 . . . . 5  |-  ( ( X  e.  V  /\  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )  ->  ( F `  X )  =  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph } )
218, 11, 20syl2anc 411 . . . 4  |-  ( X  e.  dom  F  -> 
( F `  X
)  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2221eleq2d 2274 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  <-> 
Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
) )
23 elrabi 2925 . . . . 5  |-  ( Y  e.  { y  e. 
[_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  Y  e.  [_ X  /  m ]_ M )
248, 23anim12i 338 . . . 4  |-  ( ( X  e.  dom  F  /\  Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) )
2524ex 115 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) ) )
2622, 25sylbid 150 . 2  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) ) )
276, 26mpcom 36 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {crab 2487   _Vcvv 2771   [.wsbc 2997   [_csb 3092    |-> cmpt 4104   dom cdm 4673   Rel wrel 4678   Fun wfun 5262   ` cfv 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fv 5276
This theorem is referenced by:  elfvmptrab  5669
  Copyright terms: Public domain W3C validator