ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab1 Unicode version

Theorem elfvmptrab1 5728
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
elfvmptrab1.v  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
Assertion
Ref Expression
elfvmptrab1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y    y, m
Allowed substitution hints:    ph( x, y, m)    F( x, y, m)    M( m)    V( y, m)    X( m)    Y( x, m)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 elfvmptrab1.f . . . . 5  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
21funmpt2 5356 . . . 4  |-  Fun  F
3 funrel 5334 . . . 4  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . . 3  |-  Rel  F
5 relelfvdm 5658 . . 3  |-  ( ( Rel  F  /\  Y  e.  ( F `  X
) )  ->  X  e.  dom  F )
64, 5mpan 424 . 2  |-  ( Y  e.  ( F `  X )  ->  X  e.  dom  F )
71dmmptss 5224 . . . . . 6  |-  dom  F  C_  V
87sseli 3220 . . . . 5  |-  ( X  e.  dom  F  ->  X  e.  V )
9 elfvmptrab1.v . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
10 rabexg 4226 . . . . . 6  |-  ( [_ X  /  m ]_ M  e.  _V  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
118, 9, 103syl 17 . . . . 5  |-  ( X  e.  dom  F  ->  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )
12 nfcv 2372 . . . . . 6  |-  F/_ x X
13 nfsbc1v 3047 . . . . . . 7  |-  F/ x [. X  /  x ]. ph
14 nfcv 2372 . . . . . . . 8  |-  F/_ x M
1512, 14nfcsb 3162 . . . . . . 7  |-  F/_ x [_ X  /  m ]_ M
1613, 15nfrabw 2712 . . . . . 6  |-  F/_ x { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
17 csbeq1 3127 . . . . . . 7  |-  ( x  =  X  ->  [_ x  /  m ]_ M  = 
[_ X  /  m ]_ M )
18 sbceq1a 3038 . . . . . . 7  |-  ( x  =  X  ->  ( ph 
<-> 
[. X  /  x ]. ph ) )
1917, 18rabeqbidv 2794 . . . . . 6  |-  ( x  =  X  ->  { y  e.  [_ x  /  m ]_ M  |  ph }  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2012, 16, 19, 1fvmptf 5726 . . . . 5  |-  ( ( X  e.  V  /\  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  e.  _V )  ->  ( F `  X )  =  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph } )
218, 11, 20syl2anc 411 . . . 4  |-  ( X  e.  dom  F  -> 
( F `  X
)  =  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)
2221eleq2d 2299 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  <-> 
Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
) )
23 elrabi 2956 . . . . 5  |-  ( Y  e.  { y  e. 
[_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  Y  e.  [_ X  /  m ]_ M )
248, 23anim12i 338 . . . 4  |-  ( ( X  e.  dom  F  /\  Y  e.  { y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }
)  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) )
2524ex 115 . . 3  |-  ( X  e.  dom  F  -> 
( Y  e.  {
y  e.  [_ X  /  m ]_ M  |  [. X  /  x ]. ph }  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) ) )
2622, 25sylbid 150 . 2  |-  ( X  e.  dom  F  -> 
( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e. 
[_ X  /  m ]_ M ) ) )
276, 26mpcom 36 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   [.wsbc 3028   [_csb 3124    |-> cmpt 4144   dom cdm 4718   Rel wrel 4723   Fun wfun 5311   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325
This theorem is referenced by:  elfvmptrab  5729
  Copyright terms: Public domain W3C validator