ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse GIF version

Theorem nfse 4376
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r 𝑥𝑅
nfse.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4368 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nfse.a . . 3 𝑥𝐴
3 nfcv 2339 . . . . . 6 𝑥𝑎
4 nfse.r . . . . . 6 𝑥𝑅
5 nfcv 2339 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 4079 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabw 2678 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2350 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralxy 2535 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1488 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1474  wcel 2167  wnfc 2326  wral 2475  {crab 2479  Vcvv 2763   class class class wbr 4033   Se wse 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-se 4368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator