ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse GIF version

Theorem nfse 4319
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r 𝑥𝑅
nfse.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4311 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nfse.a . . 3 𝑥𝐴
3 nfcv 2308 . . . . . 6 𝑥𝑎
4 nfse.r . . . . . 6 𝑥𝑅
5 nfcv 2308 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 4028 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabxy 2646 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2319 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralxy 2504 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1462 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1448  wcel 2136  wnfc 2295  wral 2444  {crab 2448  Vcvv 2726   class class class wbr 3982   Se wse 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-se 4311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator