ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse GIF version

Theorem nfse 4386
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r 𝑥𝑅
nfse.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4378 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nfse.a . . 3 𝑥𝐴
3 nfcv 2347 . . . . . 6 𝑥𝑎
4 nfse.r . . . . . 6 𝑥𝑅
5 nfcv 2347 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 4089 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabw 2686 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2358 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralxy 2543 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1496 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1482  wcel 2175  wnfc 2334  wral 2483  {crab 2487  Vcvv 2771   class class class wbr 4043   Se wse 4374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-se 4378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator