Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0red | Unicode version |
Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 |
Ref | Expression |
---|---|
nn0red |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9126 | . 2 | |
2 | nn0red.1 | . 2 | |
3 | 1, 2 | sselid 3145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cr 7760 cn0 9122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 ax-rnegex 7870 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-int 3830 df-inn 8866 df-n0 9123 |
This theorem is referenced by: nn0cnd 9177 nn0readdcl 9181 nn01to3 9563 xnn0dcle 9746 flqmulnn0 10242 modifeq2int 10329 modaddmodup 10330 modaddmodlo 10331 modsumfzodifsn 10339 expnegap0 10471 nn0leexp2 10632 nn0le2msqd 10640 nn0opthlem2d 10642 nn0opthd 10643 faclbnd6 10665 bcval5 10684 filtinf 10713 zfz1isolemiso 10761 mertenslemi1 11485 efcllemp 11608 eftlub 11640 oddge22np1 11827 nn0oddm1d2 11855 gcdaddm 11926 bezoutlemsup 11951 gcdzeq 11964 dvdssqlem 11972 nn0seqcvgd 11982 lcmneg 12015 mulgcddvds 12035 qredeu 12038 pw2dvdseulemle 12108 pw2dvdseu 12109 nn0sqrtelqelz 12147 nonsq 12148 pythagtriplem3 12208 pythagtriplem6 12211 pythagtriplem7 12212 pclemub 12228 pcprendvds 12231 pcpremul 12234 pcidlem 12263 pcgcd1 12268 pc2dvds 12270 pcz 12272 pcprmpw2 12273 fldivp1 12287 pcfaclem 12288 pcfac 12289 pcbc 12290 ennnfoneleminc 12353 ennnfonelemkh 12354 ennnfonelemex 12356 ennnfonelemim 12366 2sqlem7 13672 2sqlem8 13674 |
Copyright terms: Public domain | W3C validator |