Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0red | Unicode version |
Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 |
Ref | Expression |
---|---|
nn0red |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9118 | . 2 | |
2 | nn0red.1 | . 2 | |
3 | 1, 2 | sselid 3140 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cr 7752 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-int 3825 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0cnd 9169 nn0readdcl 9173 nn01to3 9555 xnn0dcle 9738 flqmulnn0 10234 modifeq2int 10321 modaddmodup 10322 modaddmodlo 10323 modsumfzodifsn 10331 expnegap0 10463 nn0leexp2 10624 nn0le2msqd 10632 nn0opthlem2d 10634 nn0opthd 10635 faclbnd6 10657 bcval5 10676 filtinf 10705 zfz1isolemiso 10752 mertenslemi1 11476 efcllemp 11599 eftlub 11631 oddge22np1 11818 nn0oddm1d2 11846 gcdaddm 11917 bezoutlemsup 11942 gcdzeq 11955 dvdssqlem 11963 nn0seqcvgd 11973 lcmneg 12006 mulgcddvds 12026 qredeu 12029 pw2dvdseulemle 12099 pw2dvdseu 12100 nn0sqrtelqelz 12138 nonsq 12139 pythagtriplem3 12199 pythagtriplem6 12202 pythagtriplem7 12203 pclemub 12219 pcprendvds 12222 pcpremul 12225 pcidlem 12254 pcgcd1 12259 pc2dvds 12261 pcz 12263 pcprmpw2 12264 fldivp1 12278 pcfaclem 12279 pcfac 12280 pcbc 12281 ennnfoneleminc 12344 ennnfonelemkh 12345 ennnfonelemex 12347 ennnfonelemim 12357 2sqlem7 13597 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |