![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0re | Unicode version |
Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0re |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9247 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-int 3872 df-inn 8985 df-n0 9244 |
This theorem is referenced by: nn0nlt0 9269 nn0le0eq0 9271 nn0p1gt0 9272 elnnnn0c 9288 nn0addge1 9289 nn0addge2 9290 nn0ge2m1nn 9303 nn0nndivcl 9305 xnn0xr 9311 nn0nepnf 9314 xnn0nemnf 9317 elnn0z 9333 elznn0nn 9334 ltsubnn0 9387 nn0negleid 9388 difgtsumgt 9389 nn0lt10b 9400 nn0ge0div 9407 xnn0lenn0nn0 9934 xnn0xadd0 9936 nn0fz0 10188 elfz0fzfz0 10195 fz0fzelfz0 10196 fz0fzdiffz0 10199 fzctr 10202 difelfzle 10203 difelfznle 10204 elfzo0le 10255 fzonmapblen 10257 fzofzim 10258 elfzodifsumelfzo 10271 fzonn0p1 10281 fzonn0p1p1 10283 elfzom1p1elfzo 10284 ubmelm1fzo 10296 fvinim0ffz 10311 subfzo0 10312 adddivflid 10364 divfl0 10368 flltdivnn0lt 10376 addmodid 10446 modfzo0difsn 10469 inftonninf 10516 bernneq 10734 bernneq3 10736 facwordi 10814 faclbnd 10815 faclbnd3 10817 faclbnd6 10818 facubnd 10819 facavg 10820 bcval4 10826 bcval5 10837 bcpasc 10840 fihashneq0 10868 dvdseq 11993 oddge22np1 12025 nn0ehalf 12047 nn0o 12051 nn0oddm1d2 12053 gcdn0gt0 12118 nn0gcdid0 12121 absmulgcd 12157 nn0seqcvgd 12182 algcvgblem 12190 algcvga 12192 lcmgcdnn 12223 prmfac1 12293 nonsq 12348 hashgcdlem 12379 odzdvds 12386 pcdvdsb 12461 pcidlem 12464 difsqpwdvds 12479 pcfaclem 12490 lgsdinn0 15205 2lgslem1c 15247 |
Copyright terms: Public domain | W3C validator |