| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0re | Unicode version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) | 
| Ref | Expression | 
|---|---|
| nn0re | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0ssre 9253 | 
. 2
 | |
| 2 | 1 | sseli 3179 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-int 3875 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: nn0nlt0 9275 nn0le0eq0 9277 nn0p1gt0 9278 elnnnn0c 9294 nn0addge1 9295 nn0addge2 9296 nn0ge2m1nn 9309 nn0nndivcl 9311 xnn0xr 9317 nn0nepnf 9320 xnn0nemnf 9323 elnn0z 9339 elznn0nn 9340 ltsubnn0 9393 nn0negleid 9394 difgtsumgt 9395 nn0lt10b 9406 nn0ge0div 9413 xnn0lenn0nn0 9940 xnn0xadd0 9942 nn0fz0 10194 elfz0fzfz0 10201 fz0fzelfz0 10202 fz0fzdiffz0 10205 fzctr 10208 difelfzle 10209 difelfznle 10210 elfzo0le 10261 fzonmapblen 10263 fzofzim 10264 elfzodifsumelfzo 10277 fzonn0p1 10287 fzonn0p1p1 10289 elfzom1p1elfzo 10290 ubmelm1fzo 10302 fvinim0ffz 10317 subfzo0 10318 adddivflid 10382 divfl0 10386 flltdivnn0lt 10394 addmodid 10464 modfzo0difsn 10487 inftonninf 10534 bernneq 10752 bernneq3 10754 facwordi 10832 faclbnd 10833 faclbnd3 10835 faclbnd6 10836 facubnd 10837 facavg 10838 bcval4 10844 bcval5 10855 bcpasc 10858 fihashneq0 10886 nn0maxcl 11390 dvdseq 12013 oddge22np1 12046 nn0ehalf 12068 nn0o 12072 nn0oddm1d2 12074 gcdn0gt0 12145 nn0gcdid0 12148 absmulgcd 12184 nn0seqcvgd 12209 algcvgblem 12217 algcvga 12219 lcmgcdnn 12250 prmfac1 12320 nonsq 12375 hashgcdlem 12406 odzdvds 12414 pcdvdsb 12489 pcidlem 12492 difsqpwdvds 12507 pcfaclem 12518 lgsdinn0 15289 2lgslem1c 15331 | 
| Copyright terms: Public domain | W3C validator |