Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0re | Unicode version |
Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9094 | . 2 | |
2 | 1 | sseli 3124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cr 7731 cn0 9090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7823 ax-resscn 7824 ax-1re 7826 ax-addrcl 7829 ax-rnegex 7841 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-int 3808 df-inn 8834 df-n0 9091 |
This theorem is referenced by: nn0nlt0 9116 nn0le0eq0 9118 nn0p1gt0 9119 elnnnn0c 9135 nn0addge1 9136 nn0addge2 9137 nn0ge2m1nn 9150 nn0nndivcl 9152 xnn0xr 9158 nn0nepnf 9161 xnn0nemnf 9164 elnn0z 9180 elznn0nn 9181 nn0lt10b 9244 nn0ge0div 9251 xnn0lenn0nn0 9769 xnn0xadd0 9771 nn0fz0 10021 elfz0fzfz0 10025 fz0fzelfz0 10026 fz0fzdiffz0 10029 fzctr 10032 difelfzle 10033 difelfznle 10034 elfzo0le 10084 fzonmapblen 10086 fzofzim 10087 elfzodifsumelfzo 10100 fzonn0p1 10110 fzonn0p1p1 10112 elfzom1p1elfzo 10113 ubmelm1fzo 10125 fvinim0ffz 10140 subfzo0 10141 adddivflid 10191 divfl0 10195 flltdivnn0lt 10203 addmodid 10271 modfzo0difsn 10294 inftonninf 10340 bernneq 10538 bernneq3 10540 facwordi 10614 faclbnd 10615 faclbnd3 10617 faclbnd6 10618 facubnd 10619 facavg 10620 bcval4 10626 bcval5 10637 bcpasc 10640 fihashneq0 10669 dvdseq 11740 oddge22np1 11772 nn0ehalf 11794 nn0o 11798 nn0oddm1d2 11800 gcdn0gt0 11862 nn0gcdid0 11865 absmulgcd 11901 nn0seqcvgd 11918 algcvgblem 11926 algcvga 11928 lcmgcdnn 11959 prmfac1 12027 nonsq 12082 hashgcdlem 12113 odzdvds 12120 |
Copyright terms: Public domain | W3C validator |