Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0re | Unicode version |
Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9139 | . 2 | |
2 | 1 | sseli 3143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cr 7773 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-int 3832 df-inn 8879 df-n0 9136 |
This theorem is referenced by: nn0nlt0 9161 nn0le0eq0 9163 nn0p1gt0 9164 elnnnn0c 9180 nn0addge1 9181 nn0addge2 9182 nn0ge2m1nn 9195 nn0nndivcl 9197 xnn0xr 9203 nn0nepnf 9206 xnn0nemnf 9209 elnn0z 9225 elznn0nn 9226 ltsubnn0 9279 nn0negleid 9280 difgtsumgt 9281 nn0lt10b 9292 nn0ge0div 9299 xnn0lenn0nn0 9822 xnn0xadd0 9824 nn0fz0 10075 elfz0fzfz0 10082 fz0fzelfz0 10083 fz0fzdiffz0 10086 fzctr 10089 difelfzle 10090 difelfznle 10091 elfzo0le 10141 fzonmapblen 10143 fzofzim 10144 elfzodifsumelfzo 10157 fzonn0p1 10167 fzonn0p1p1 10169 elfzom1p1elfzo 10170 ubmelm1fzo 10182 fvinim0ffz 10197 subfzo0 10198 adddivflid 10248 divfl0 10252 flltdivnn0lt 10260 addmodid 10328 modfzo0difsn 10351 inftonninf 10397 bernneq 10596 bernneq3 10598 facwordi 10674 faclbnd 10675 faclbnd3 10677 faclbnd6 10678 facubnd 10679 facavg 10680 bcval4 10686 bcval5 10697 bcpasc 10700 fihashneq0 10729 dvdseq 11808 oddge22np1 11840 nn0ehalf 11862 nn0o 11866 nn0oddm1d2 11868 gcdn0gt0 11933 nn0gcdid0 11936 absmulgcd 11972 nn0seqcvgd 11995 algcvgblem 12003 algcvga 12005 lcmgcdnn 12036 prmfac1 12106 nonsq 12161 hashgcdlem 12192 odzdvds 12199 pcdvdsb 12273 pcidlem 12276 difsqpwdvds 12291 pcfaclem 12301 lgsdinn0 13743 |
Copyright terms: Public domain | W3C validator |