| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0re | Unicode version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9301 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-int 3886 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: nn0nlt0 9323 nn0le0eq0 9325 nn0p1gt0 9326 elnnnn0c 9342 nn0addge1 9343 nn0addge2 9344 nn0ge2m1nn 9357 nn0nndivcl 9359 xnn0xr 9365 nn0nepnf 9368 xnn0nemnf 9371 elnn0z 9387 elznn0nn 9388 ltsubnn0 9442 nn0negleid 9443 difgtsumgt 9444 nn0lt10b 9455 nn0ge0div 9462 xnn0lenn0nn0 9989 xnn0xadd0 9991 nn0fz0 10243 elfz0fzfz0 10250 fz0fzelfz0 10251 fz0fzdiffz0 10254 fzctr 10257 difelfzle 10258 difelfznle 10259 elfzo0le 10311 fzonmapblen 10313 fzofzim 10314 elincfzoext 10324 elfzodifsumelfzo 10332 fzonn0p1 10342 fzonn0p1p1 10344 elfzom1p1elfzo 10345 ubmelm1fzo 10357 fvinim0ffz 10372 subfzo0 10373 adddivflid 10437 divfl0 10441 flltdivnn0lt 10449 addmodid 10519 modfzo0difsn 10542 inftonninf 10589 bernneq 10807 bernneq3 10809 facwordi 10887 faclbnd 10888 faclbnd3 10890 faclbnd6 10891 facubnd 10892 facavg 10893 bcval4 10899 bcval5 10910 bcpasc 10913 fihashneq0 10941 ccat0 11055 swrdsbslen 11122 nn0maxcl 11569 dvdseq 12192 oddge22np1 12225 nn0ehalf 12247 nn0o 12251 nn0oddm1d2 12253 bitsfi 12301 gcdn0gt0 12332 nn0gcdid0 12335 absmulgcd 12371 nn0seqcvgd 12396 algcvgblem 12404 algcvga 12406 lcmgcdnn 12437 prmfac1 12507 nonsq 12562 hashgcdlem 12593 odzdvds 12601 pcdvdsb 12676 pcidlem 12679 difsqpwdvds 12694 pcfaclem 12705 lgsdinn0 15558 2lgslem1c 15600 |
| Copyright terms: Public domain | W3C validator |