| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0re | Unicode version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9270 |
. 2
| |
| 2 | 1 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: nn0nlt0 9292 nn0le0eq0 9294 nn0p1gt0 9295 elnnnn0c 9311 nn0addge1 9312 nn0addge2 9313 nn0ge2m1nn 9326 nn0nndivcl 9328 xnn0xr 9334 nn0nepnf 9337 xnn0nemnf 9340 elnn0z 9356 elznn0nn 9357 ltsubnn0 9410 nn0negleid 9411 difgtsumgt 9412 nn0lt10b 9423 nn0ge0div 9430 xnn0lenn0nn0 9957 xnn0xadd0 9959 nn0fz0 10211 elfz0fzfz0 10218 fz0fzelfz0 10219 fz0fzdiffz0 10222 fzctr 10225 difelfzle 10226 difelfznle 10227 elfzo0le 10278 fzonmapblen 10280 fzofzim 10281 elfzodifsumelfzo 10294 fzonn0p1 10304 fzonn0p1p1 10306 elfzom1p1elfzo 10307 ubmelm1fzo 10319 fvinim0ffz 10334 subfzo0 10335 adddivflid 10399 divfl0 10403 flltdivnn0lt 10411 addmodid 10481 modfzo0difsn 10504 inftonninf 10551 bernneq 10769 bernneq3 10771 facwordi 10849 faclbnd 10850 faclbnd3 10852 faclbnd6 10853 facubnd 10854 facavg 10855 bcval4 10861 bcval5 10872 bcpasc 10875 fihashneq0 10903 nn0maxcl 11407 dvdseq 12030 oddge22np1 12063 nn0ehalf 12085 nn0o 12089 nn0oddm1d2 12091 bitsfi 12139 gcdn0gt0 12170 nn0gcdid0 12173 absmulgcd 12209 nn0seqcvgd 12234 algcvgblem 12242 algcvga 12244 lcmgcdnn 12275 prmfac1 12345 nonsq 12400 hashgcdlem 12431 odzdvds 12439 pcdvdsb 12514 pcidlem 12517 difsqpwdvds 12532 pcfaclem 12543 lgsdinn0 15373 2lgslem1c 15415 |
| Copyright terms: Public domain | W3C validator |