| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 0re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8073 |
. 2
| |
| 2 | ax-rnegex 8036 |
. 2
| |
| 3 | readdcl 8053 |
. . . . 5
| |
| 4 | 1, 3 | mpan 424 |
. . . 4
|
| 5 | eleq1 2268 |
. . . 4
| |
| 6 | 4, 5 | syl5ibcom 155 |
. . 3
|
| 7 | 6 | rexlimiv 2617 |
. 2
|
| 8 | 1, 2, 7 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8021 ax-addrcl 8024 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: 0red 8075 0xr 8121 axmulgt0 8146 gtso 8153 0lt1 8201 ine0 8468 ltaddneg 8499 addgt0 8523 addgegt0 8524 addgtge0 8525 addge0 8526 ltaddpos 8527 ltneg 8537 leneg 8540 lt0neg1 8543 lt0neg2 8544 le0neg1 8545 le0neg2 8546 addge01 8547 suble0 8551 0le1 8556 gt0ne0i 8561 gt0ne0d 8587 lt0ne0d 8588 recexre 8653 recexgt0 8655 inelr 8659 rimul 8660 1ap0 8665 reapmul1 8670 apsqgt0 8676 msqge0 8691 mulge0 8694 recexaplem2 8727 recexap 8728 rerecclap 8805 ltm1 8921 recgt0 8925 ltmul12a 8935 lemul12a 8937 mulgt1 8938 gt0div 8945 ge0div 8946 recgt1i 8973 recreclt 8975 sup3exmid 9032 crap0 9033 nnge1 9061 nngt0 9063 nnrecgt0 9076 0ne1 9105 0le0 9127 neg1lt0 9146 halfge0 9255 iap0 9262 nn0ssre 9301 nn0ge0 9322 nn0nlt0 9323 nn0le0eq0 9325 0mnnnnn0 9329 elnnnn0b 9341 elnnnn0c 9342 elnnz 9384 0z 9385 elnnz1 9397 nn0lt10b 9455 recnz 9468 gtndiv 9470 fnn0ind 9491 rpge0 9790 rpnegap 9810 0nrp 9813 0ltpnf 9906 mnflt0 9908 xneg0 9955 xaddid1 9986 xnn0xadd0 9991 xposdif 10006 elrege0 10100 0e0icopnf 10103 0elunit 10110 1elunit 10111 divelunit 10126 lincmb01cmp 10127 iccf1o 10128 unitssre 10129 fz0to4untppr 10248 modqelico 10481 modqmuladdim 10514 addmodid 10519 xnn0nnen 10584 expubnd 10743 le2sq2 10762 bernneq2 10808 expnbnd 10810 expnlbnd 10811 faclbnd 10888 faclbnd3 10890 faclbnd6 10891 bcval4 10899 bcpasc 10913 lsw0 11043 reim0 11205 re0 11239 im0 11240 rei 11243 imi 11244 cj0 11245 caucvgre 11325 rennim 11346 sqrt0rlem 11347 sqrt0 11348 resqrexlemdecn 11356 resqrexlemnm 11362 resqrexlemgt0 11364 sqrt00 11384 sqrt9 11392 sqrt2gt1lt2 11393 leabs 11418 ltabs 11431 sqrtpclii 11474 max0addsup 11563 fimaxre2 11571 climge0 11669 iserge0 11687 fsum00 11806 arisum2 11843 0.999... 11865 fprodge0 11981 cos0 12074 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 cos2bnd 12104 sin01gt0 12106 cos01gt0 12107 sincos2sgn 12110 sin4lt0 12111 absef 12114 absefib 12115 efieq1re 12116 epos 12125 flodddiv4 12280 gcdn0gt0 12332 nn0seqcvgd 12396 algcvgblem 12404 algcvga 12406 pythagtriplem12 12631 pythagtriplem13 12632 pythagtriplem14 12633 pythagtriplem16 12635 mulgnegnn 13501 ssblps 14930 ssbl 14931 xmeter 14941 cnbl0 15039 hovera 15152 hovergt0 15155 plyrecj 15268 reeff1olem 15276 pilem3 15288 pipos 15293 sinhalfpilem 15296 sincosq1sgn 15331 sincosq2sgn 15332 sinq34lt0t 15336 coseq0q4123 15339 coseq00topi 15340 coseq0negpitopi 15341 tangtx 15343 sincos4thpi 15345 sincos6thpi 15347 cosordlem 15354 cosq34lt1 15355 cos02pilt1 15356 cos0pilt1 15357 cos11 15358 ioocosf1o 15359 log1 15371 logrpap0b 15381 logdivlti 15386 rpabscxpbnd 15445 lgsval2lem 15520 lgsval4a 15532 lgsneg 15534 lgsdilem 15537 lgsdir2lem1 15538 ex-gcd 15704 trilpolemclim 16012 trilpolemcl 16013 trilpolemisumle 16014 trilpolemeq1 16016 trilpolemlt1 16017 trirec0 16020 apdiff 16024 redc0 16033 reap0 16034 dceqnconst 16036 dcapnconst 16037 nconstwlpolemgt0 16040 neap0mkv 16045 |
| Copyright terms: Public domain | W3C validator |