| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 0re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8071 |
. 2
| |
| 2 | ax-rnegex 8034 |
. 2
| |
| 3 | readdcl 8051 |
. . . . 5
| |
| 4 | 1, 3 | mpan 424 |
. . . 4
|
| 5 | eleq1 2268 |
. . . 4
| |
| 6 | 4, 5 | syl5ibcom 155 |
. . 3
|
| 7 | 6 | rexlimiv 2617 |
. 2
|
| 8 | 1, 2, 7 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: 0red 8073 0xr 8119 axmulgt0 8144 gtso 8151 0lt1 8199 ine0 8466 ltaddneg 8497 addgt0 8521 addgegt0 8522 addgtge0 8523 addge0 8524 ltaddpos 8525 ltneg 8535 leneg 8538 lt0neg1 8541 lt0neg2 8542 le0neg1 8543 le0neg2 8544 addge01 8545 suble0 8549 0le1 8554 gt0ne0i 8559 gt0ne0d 8585 lt0ne0d 8586 recexre 8651 recexgt0 8653 inelr 8657 rimul 8658 1ap0 8663 reapmul1 8668 apsqgt0 8674 msqge0 8689 mulge0 8692 recexaplem2 8725 recexap 8726 rerecclap 8803 ltm1 8919 recgt0 8923 ltmul12a 8933 lemul12a 8935 mulgt1 8936 gt0div 8943 ge0div 8944 recgt1i 8971 recreclt 8973 sup3exmid 9030 crap0 9031 nnge1 9059 nngt0 9061 nnrecgt0 9074 0ne1 9103 0le0 9125 neg1lt0 9144 halfge0 9253 iap0 9260 nn0ssre 9299 nn0ge0 9320 nn0nlt0 9321 nn0le0eq0 9323 0mnnnnn0 9327 elnnnn0b 9339 elnnnn0c 9340 elnnz 9382 0z 9383 elnnz1 9395 nn0lt10b 9453 recnz 9466 gtndiv 9468 fnn0ind 9489 rpge0 9788 rpnegap 9808 0nrp 9811 0ltpnf 9904 mnflt0 9906 xneg0 9953 xaddid1 9984 xnn0xadd0 9989 xposdif 10004 elrege0 10098 0e0icopnf 10101 0elunit 10108 1elunit 10109 divelunit 10124 lincmb01cmp 10125 iccf1o 10126 unitssre 10127 fz0to4untppr 10246 modqelico 10479 modqmuladdim 10512 addmodid 10517 xnn0nnen 10582 expubnd 10741 le2sq2 10760 bernneq2 10806 expnbnd 10808 expnlbnd 10809 faclbnd 10886 faclbnd3 10888 faclbnd6 10889 bcval4 10897 bcpasc 10911 lsw0 11041 reim0 11172 re0 11206 im0 11207 rei 11210 imi 11211 cj0 11212 caucvgre 11292 rennim 11313 sqrt0rlem 11314 sqrt0 11315 resqrexlemdecn 11323 resqrexlemnm 11329 resqrexlemgt0 11331 sqrt00 11351 sqrt9 11359 sqrt2gt1lt2 11360 leabs 11385 ltabs 11398 sqrtpclii 11441 max0addsup 11530 fimaxre2 11538 climge0 11636 iserge0 11654 fsum00 11773 arisum2 11810 0.999... 11832 fprodge0 11948 cos0 12041 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 cos2bnd 12071 sin01gt0 12073 cos01gt0 12074 sincos2sgn 12077 sin4lt0 12078 absef 12081 absefib 12082 efieq1re 12083 epos 12092 flodddiv4 12247 gcdn0gt0 12299 nn0seqcvgd 12363 algcvgblem 12371 algcvga 12373 pythagtriplem12 12598 pythagtriplem13 12599 pythagtriplem14 12600 pythagtriplem16 12602 mulgnegnn 13468 ssblps 14897 ssbl 14898 xmeter 14908 cnbl0 15006 hovera 15119 hovergt0 15122 plyrecj 15235 reeff1olem 15243 pilem3 15255 pipos 15260 sinhalfpilem 15263 sincosq1sgn 15298 sincosq2sgn 15299 sinq34lt0t 15303 coseq0q4123 15306 coseq00topi 15307 coseq0negpitopi 15308 tangtx 15310 sincos4thpi 15312 sincos6thpi 15314 cosordlem 15321 cosq34lt1 15322 cos02pilt1 15323 cos0pilt1 15324 cos11 15325 ioocosf1o 15326 log1 15338 logrpap0b 15348 logdivlti 15353 rpabscxpbnd 15412 lgsval2lem 15487 lgsval4a 15499 lgsneg 15501 lgsdilem 15504 lgsdir2lem1 15505 ex-gcd 15671 trilpolemclim 15979 trilpolemcl 15980 trilpolemisumle 15981 trilpolemeq1 15983 trilpolemlt1 15984 trirec0 15987 apdiff 15991 redc0 16000 reap0 16001 dceqnconst 16003 dcapnconst 16004 nconstwlpolemgt0 16007 neap0mkv 16012 |
| Copyright terms: Public domain | W3C validator |