![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0re | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
0re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7686 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax-rnegex 7651 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | readdcl 7667 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 3 | mpan 418 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eleq1 2177 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl5ibcom 154 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | rexlimiv 2517 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2b 8 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-1re 7636 ax-addrcl 7639 ax-rnegex 7651 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-cleq 2108 df-clel 2111 df-ral 2395 df-rex 2396 |
This theorem is referenced by: 0red 7688 0xr 7733 axmulgt0 7757 gtso 7763 0lt1 7809 ine0 8072 ltaddneg 8102 addgt0 8126 addgegt0 8127 addgtge0 8128 addge0 8129 ltaddpos 8130 ltneg 8140 leneg 8143 lt0neg1 8146 lt0neg2 8147 le0neg1 8148 le0neg2 8149 addge01 8150 suble0 8154 0le1 8159 gt0ne0i 8164 gt0ne0d 8190 lt0ne0d 8191 recexre 8255 recexgt0 8257 inelr 8261 rimul 8262 1ap0 8267 reapmul1 8272 apsqgt0 8278 msqge0 8293 mulge0 8296 recexaplem2 8323 recexap 8324 rerecclap 8400 ltm1 8511 recgt0 8515 ltmul12a 8525 lemul12a 8527 mulgt1 8528 gt0div 8535 ge0div 8536 recgt1i 8563 recreclt 8565 sup3exmid 8622 crap0 8623 nnge1 8650 nngt0 8652 nnrecgt0 8665 0ne1 8694 0le0 8716 neg1lt0 8735 halfge0 8837 iap0 8844 nn0ssre 8882 nn0ge0 8903 nn0nlt0 8904 nn0le0eq0 8906 0mnnnnn0 8910 elnnnn0b 8922 elnnnn0c 8923 elnnz 8965 0z 8966 elnnz1 8978 nn0lt10b 9032 recnz 9045 gtndiv 9047 fnn0ind 9068 rpge0 9352 rpnegap 9372 0nrp 9373 0ltpnf 9458 mnflt0 9460 xneg0 9504 xaddid1 9535 xnn0xadd0 9540 xposdif 9555 elrege0 9649 0e0icopnf 9652 0elunit 9659 1elunit 9660 divelunit 9675 lincmb01cmp 9676 iccf1o 9677 unitssre 9678 modqelico 9997 modqmuladdim 10030 addmodid 10035 expubnd 10240 le2sq2 10258 bernneq2 10303 expnbnd 10305 expnlbnd 10306 faclbnd 10377 faclbnd3 10379 faclbnd6 10380 bcval4 10388 bcpasc 10402 reim0 10523 re0 10557 im0 10558 rei 10561 imi 10562 cj0 10563 caucvgre 10642 rennim 10663 sqrt0rlem 10664 sqrt0 10665 resqrexlemdecn 10673 resqrexlemnm 10679 resqrexlemgt0 10681 sqrt00 10701 sqrt9 10709 sqrt2gt1lt2 10710 leabs 10735 ltabs 10748 sqrtpclii 10791 max0addsup 10880 fimaxre2 10887 climge0 10983 iserge0 11001 fsum00 11120 arisum2 11157 0.999... 11179 cos0 11285 ef01bndlem 11311 sin01bnd 11312 cos01bnd 11313 cos2bnd 11315 sin01gt0 11316 cos01gt0 11317 sincos2sgn 11320 sin4lt0 11321 absef 11323 absefib 11324 efieq1re 11325 epos 11332 flodddiv4 11476 gcdn0gt0 11511 nn0seqcvgd 11565 algcvgblem 11573 algcvga 11575 ssblps 12411 ssbl 12412 xmeter 12422 cnbl0 12520 ex-gcd 12630 trilpolemclim 12913 trilpolemcl 12914 trilpolemisumle 12915 trilpolemeq1 12917 trilpolemlt1 12918 |
Copyright terms: Public domain | W3C validator |