ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindALT Unicode version

Theorem nnindALT 8966
Description: Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis.

This ALT version of nnind 8965 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
nnindALT.6  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
nnindALT.5  |-  ps
nnindALT.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nnindALT.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nnindALT.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nnindALT.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
nnindALT  |-  ( A  e.  NN  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nnindALT
StepHypRef Expression
1 nnindALT.1 . 2  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
2 nnindALT.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
3 nnindALT.3 . 2  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
4 nnindALT.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
5 nnindALT.5 . 2  |-  ps
6 nnindALT.6 . 2  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
71, 2, 3, 4, 5, 6nnind 8965 1  |-  ( A  e.  NN  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160  (class class class)co 5896   1c1 7842    + caddc 7844   NNcn 8949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5899  df-inn 8950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator