| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnindALT | Unicode version | ||
| Description: Principle of Mathematical
Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 9006 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| nnindALT.6 |
|
| nnindALT.5 |
|
| nnindALT.1 |
|
| nnindALT.2 |
|
| nnindALT.3 |
|
| nnindALT.4 |
|
| Ref | Expression |
|---|---|
| nnindALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnindALT.1 |
. 2
| |
| 2 | nnindALT.2 |
. 2
| |
| 3 | nnindALT.3 |
. 2
| |
| 4 | nnindALT.4 |
. 2
| |
| 5 | nnindALT.5 |
. 2
| |
| 6 | nnindALT.6 |
. 2
| |
| 7 | 1, 2, 3, 4, 5, 6 | nnind 9006 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |