ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindALT Unicode version

Theorem nnindALT 9127
Description: Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis.

This ALT version of nnind 9126 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
nnindALT.6  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
nnindALT.5  |-  ps
nnindALT.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nnindALT.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nnindALT.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nnindALT.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
nnindALT  |-  ( A  e.  NN  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nnindALT
StepHypRef Expression
1 nnindALT.1 . 2  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
2 nnindALT.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
3 nnindALT.3 . 2  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
4 nnindALT.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
5 nnindALT.5 . 2  |-  ps
6 nnindALT.6 . 2  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
71, 2, 3, 4, 5, 6nnind 9126 1  |-  ( A  e.  NN  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200  (class class class)co 6001   1c1 8000    + caddc 8002   NNcn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator