| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnindALT | Unicode version | ||
| Description: Principle of Mathematical
Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 9087 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| nnindALT.6 |
|
| nnindALT.5 |
|
| nnindALT.1 |
|
| nnindALT.2 |
|
| nnindALT.3 |
|
| nnindALT.4 |
|
| Ref | Expression |
|---|---|
| nnindALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnindALT.1 |
. 2
| |
| 2 | nnindALT.2 |
. 2
| |
| 3 | nnindALT.3 |
. 2
| |
| 4 | nnindALT.4 |
. 2
| |
| 5 | nnindALT.5 |
. 2
| |
| 6 | nnindALT.6 |
. 2
| |
| 7 | 1, 2, 3, 4, 5, 6 | nnind 9087 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |