ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindALT Unicode version

Theorem nnindALT 9088
Description: Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis.

This ALT version of nnind 9087 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
nnindALT.6  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
nnindALT.5  |-  ps
nnindALT.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nnindALT.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nnindALT.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nnindALT.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
nnindALT  |-  ( A  e.  NN  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nnindALT
StepHypRef Expression
1 nnindALT.1 . 2  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
2 nnindALT.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
3 nnindALT.3 . 2  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
4 nnindALT.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
5 nnindALT.5 . 2  |-  ps
6 nnindALT.6 . 2  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
71, 2, 3, 4, 5, 6nnind 9087 1  |-  ( A  e.  NN  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178  (class class class)co 5967   1c1 7961    + caddc 7963   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator