Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnindALT | Unicode version |
Description: Principle of Mathematical
Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 8873 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nnindALT.6 | |
nnindALT.5 | |
nnindALT.1 | |
nnindALT.2 | |
nnindALT.3 | |
nnindALT.4 |
Ref | Expression |
---|---|
nnindALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindALT.1 | . 2 | |
2 | nnindALT.2 | . 2 | |
3 | nnindALT.3 | . 2 | |
4 | nnindALT.4 | . 2 | |
5 | nnindALT.5 | . 2 | |
6 | nnindALT.6 | . 2 | |
7 | 1, 2, 3, 4, 5, 6 | nnind 8873 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 (class class class)co 5842 c1 7754 caddc 7756 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |